Development of Long-Acting Antibacterial Drugs for Pets Based on Nanotechnology
DOI: https://doi.org/10.62381/ACS.SDIT2024.05
Author(s)
Zimeng Wang
Affiliation(s)
Jinan Foreign Language School, Jinan, Shandong, China
Abstract
This study looked into how nanotechnology could be used to create long-lasting antibacterial drugs for pets. It analyzed how different types of nanomaterials work to improve drug effectiveness and how long they stay active in the body. The findings showed that nano-based antibacterial agents are highly effective in treating chronic diseases in pets by increasing the duration and precision of drug delivery. Additionally, research on the safety of these materials indicated that techniques like surface modification and adjusting particle size can reduce toxicity, making them more suitable for clinical use. Overall, nanotechnology holds great promise in pet medicine, particularly for developing long-acting antibacterial drugs.
Keywords
Nanotechnology; Long-Acting Antibacterial Drugs; Pet Medicine; Bioavailability; Safety
References
[1]Rizzello, L., Pompa, P.: Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chemical Society reviews, 43(5), 1501-1518(2014).
[2]Seil, J., Webster, T.: Antimicrobial applications of nanotechnology: methods and literature. International Journal of Nanomedicine, 7, 2767-2781(2012).
[3]Wang, L., Hu, C., Shao, L.: The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227-1249(2017).
[4]Natan, M., Banin, E.: From Nano to Micro: using nanotechnology to combat microorganisms and their multidrug resistance. FEMS microbiology reviews, 41(3), 302-322(2017).
[5]Guo, Z., Chen, Y., Wang, Y., Jiang, H., Wang, X.: Advances and challenges in metallic nanomaterial synthesis and antibacterial applications. Journal of materials chemistry. B, (2020).
[6]Xia, M., Xie, Y., Yu, C., Chen, G., Li, Y., Zhang, T., Peng, Q.: Graphene-based nanomaterials: the promising active agents for antibiotics-independent antibacterial applications. Journal of controlled release, 307, 16-31(2019).
[7]Qi, M., Li, W., Zheng, X., Li, X., Sun, Y., Wang, Y., Li, C., Wang, L.: Cerium and Its Oxidant-Based Nanomaterials for Antibacterial Applications: A State-of-the-Art Review. Frontiers in Materials, 7(2020).
[8]Zhang, J., Tang, W., Zhang, X., Song, Z., Tong, T.: An Overview of Stimuli-Responsive Intelligent Antibacterial Nanomaterials. Pharmaceutics, 15(2023).
[9]Xi, Y., Song, T., Tang, S., Wang, N., Du, J.: Preparation and Antibacterial Mechanism Insight of Polypeptide-Based Micelles with Excellent Antibacterial Activities. Biomacromolecules, 17(12), 3922-3930(2016).
[10]Navarro Gallón, S., Alpaslan, E., Wang, M., Larese-Casanova, P., Londoño, M. E., Atehortúa, L., Pavón, J., Webster, T.: Characterization and study of the antibacterial mechanisms of silver nanoparticles prepared with microalgal exopolysaccharides. Materials science & engineering. C, Materials for biological applications, 99, 685-695(2019).
[11]Xu, J., Yao, K., Xu, Z.: Nanomaterials with a photothermal effect for antibacterial activities: an overview. Nanoscale, 11(18), 8680-8691(2019).
[12]Varier, K. M., Gudeppu, M., Chinnasamy, A., Thangarajan, S., Balasubramanian, J., Li, Y., Gajendran, B.: Nanoparticles: Antimicrobial Applications and Its Prospects. Advanced Nanostructured Materials for Environmental Remediation, 25, 321-355(2019).
[13]Zhu, H., Peng, N., Liang, X., Yang, S., Cai, S., Chen, Z., Yang, Y., Wang, J., Wang, Y.: Synthesis, properties and mechanism of carbon dots-based nano-antibacterial materials. Biomedical Materials, 18(2023).
[14]Díaz-García, D., Ardiles, P. R., Prashar, S., Rodrı́guez-Diéguez, A., Páez, P., Gómez‐Ruiz, S.: Preparation and Study of the Antibacterial Applications and Oxidative Stress Induction of Copper Maleamate-Functionalized Mesoporous Silica Nanoparticles. Pharmaceutics, 11(2019).
[15]Radford, A., Noble, P., Coyne, K., Gaskell, R., Jones, P. H., Bryan, J., Setzkorn, C., Tierney, A., Dawson, S.: Antibacterial prescribing patterns in small animal veterinary practice identified via SAVSNET: the small animal veterinary surveillance network. Veterinary Record, 169, 310-310(2011).
[16]Paukner, S., Riedl, R.: Pleuromutilins: Potent Drugs for Resistant Bugs-Mode of Action and Resistance. Cold Spring Harbor perspectives in medicine, 7(1)(2017).
[17]Hernández-González, J. C., Martínez-Tapia, A., Lazcano-Hernández, G., García-Pérez, B., Castrejón-Jiménez, N. S.: Bacteriocins from Lactic Acid Bacteria. A Powerful Alternative as Antimicrobials, Probiotics, and Immunomodulators in Veterinary Medicine. Animals, 11(4)(2021).
[18]Zhao, R., Lv, M., Li, Y., Sun, M., Kong, W., Wang, L., Song, S., Fan, C., Jia, L., Qiu, S., Sun, Y., Song, H., Hao, R.: Stable Nanocomposite Based on PEGylated and Silver Nanoparticles Loaded Graphene Oxide for Long-Term Antibacterial Activity. ACS applied materials & interfaces, 9(18), 15328-15341(2017).
[19]Osman, N., Devnarain, N., Omolo, C. A., Fasiku, V., Jaglal, Y., Govender, T.: Surface modification of nano-drug delivery systems for enhancing antibiotic delivery and activity. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, e1758(2021).
[20]Rudramurthy, G. R., Swamy, M. K., Sinniah, U., Ghasemzadeh, A.: Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes. Molecules, 21(7), 836(2016).
[21]Vimbela, G. V., Ngo, S. M., Fraze, C., Yang, L., Stout, D.: Antibacterial properties and toxicity from metallic nanomaterials. International Journal of Nanomedicine, 12, 3941-3965(2017).
[22]Yang, Y., Sun, Y., Liu, Y., Peng, J., Wu, Y., Zhang, Y., Feng, W., Li, F.: Long-term in vivo biodistribution and toxicity of Gd(OH)3 nanorods. Biomaterials, 34(2), 508-515(2013).
[23]Ghoora, Manjula & Srividya, Dr. (2016). Antimicrobial Nanotechnology: Research Implications and Prospects in Food Safety.