AEPH
Home > Higher Education and Practice > Vol. 1 No. 8 (HEP 2024) >
Bibliometric and Visual Analysis of the International Research on Dysarthria in Linguistics
DOI: https://doi.org/10.62381/H241813
Author(s)
Yuqing Liao, Xirui Liu*
Affiliation(s)
School of Foreign Languages, Henan University of Technology, Zhengzhou, Henan 450001, China *Corresponding Author.
Abstract
Dysarthria is a key interdisciplinary research focus in phonetics and medicine, with significant research and application value. Using the bibliometric tools CiteSpace and Bibliometrix, this study analyzes 1,850 dysarthria-related papers from the WOS Core Collection, examining trends and hotspots from 1966 to 2024 from a linguistic perspective and predicting future developments. Key findings include: First, publications on dysarthria in linguistics have steadily increased, with the Journal of Speech, Language, and Hearing Research emerging as a highly cited journal, and Murdoch B.E. and Kent R.D. as influential authors. Second, research focuses primarily on disease types, speech characteristics, and rehabilitation methods. In the last five years, bulbar, deep learning, and speech recognition have become emerging topics. Lastly, the integration of artificial intelligence and big data is suggested for future research to enhance the analysis of patients' speech characteristics and improve rehabilitation technologies.
Keywords
Dysarthria; Citespace; Bibliometrix; Psycholinguistics
References
[1] Enderby, P. Disorders of communication: dysarthria. In Handbook of Clinical Neurology, 2nd ed.; Barnes, M.P., Good, D.C., Eds.; Elsevier: Amsterdam, Netherlands, 2013; Volume 110, pp. 273-281. https://doi.org/10.1016/B978-0-444-52901-5.00022-8. [2] Benjamin, J.S. Comprehensive Textbook of Psychiatry, 6th ed.; Lippincott Williams & Wilkins: Philadelphia, 2000; pp. 2645–2655. [3] Nakeva, V.M.C. Phonemic discrimination and reproduction in 4-5-year-old children: relations to hearing. International Journal of Pediatric Otorhinolaryngology 2020, 133:109981. https://doi.org/10.1016/j.ijporl.2020.109981. [4] Walshe, M.; Miller, N. Living with acquired dysarthria: the speaker's perspective. Disability and Rehabilitation 2011, 33(3), 195–203. https://doi.org/10.3109/09638288.2010.511685. [5] Duffy, J.R. Motor Speech Disorders: Substrates, Differential Diagnosis, and Management, 2nd ed.; Elsevier Mosby: St. Louis, MO, 2005. [6] Qiu, W.H. Evaluation and Speech Therapy of Articulation Disorders. Chin. Clin. Rehabil. 2004, 8(28), pp. 6155. [7] Li, S.L. Evaluation and Treatment of Articulation Disorders. Mod. Rehabil. 2001, 5(12), pp. 24. [8] Urban, P.P.; Hopf, H.C.; Zorowka, P.G.; Fleischer, S.; Andreas, J. Dysarthria and Lacunar Stroke: Pathophysiologic Aspects. Neurology 1996, 47(5), pp. 1135-1141. https://doi.org/10.1212/WNL.47.5.1135. [9] Zielińska, D. Linguistic Research in the Empirical Paradigm as Outlined by Mario Bunge. SpringerPlus 2016, 5, 1183. https://doi.org/10.1186/s40064-016-2684-5. [10] Ziegler, W.; Staiger, A.; Schölderle, T. Profiles of Dysarthria: Clinical Assessment and Treatment. Brain Sci. 2024, 14(1), 11. https://doi.org/10.3390/brainsci14010011. [11] Chen, C. The CiteSpace Manual. Coll. Comput. Inform. 2014, 1(1), pp. 1–84. [12] Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetrics 2017, 11(4), pp. 959–975. [13] Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and Weaknesses. FASEB J. 2008, 22, pp. 338–342. https://doi.org/10.1096/fj.07-9492LSF. [14] Clarivate. Web of Science Core Collection Search Fields. Clarivate. Accessed on [October 20, 2024]. Available online: https://clarivate.com/webofsciencegroup/solutions/web-of-science-core-collection/. [15] Garfield, E.; Pudovkin, A.I. The HistCite System for Mapping and Bibliometric Analysis of the Output of Searches Using the ISI Web of Knowledge. Presented at the ASIS&T Meeting, Philadelphia, PA, U.S.A., November 2004. Available online: https://garfield.library.upenn.edu/papers/asist112004.pdf. [16] Chen, C. The CiteSpace Manual. 2014. Available online: http://cluster.ischool.drexel.edu/~cchen/citespace/CiteSpaceManual.pdf. [17] Chen, C. CiteSpace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57(3), pp. 359–377. [18] Chen, C.; Hu, Z.; Liu, S.; Tseng, H. Emerging Trends in Regenerative Medicine: A Scientometric Analysis in CiteSpace. Expert Opin. Biol. Ther. 2012, 12(5), pp. 593–608. https://doi.org/10.1517/14712598.2012.674507. [19] Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetrics 2017, 11(4), pp. 959–975. https://doi.org/10.1016/j.joi.2017.08.007. [20] Bornmann, L.; Mutz, R. Growth Rates of Modern Science: A Bibliometric Analysis Based on the Number of Publications and Cited References. J. Assoc. Inf. Sci. Technol. 2015, 66(11), pp. 2215–2222. https://doi.org/10.1002/asi. [21] Wuchty, S.; Jones, B.F.; Uzzi, B. The Increasing Dominance of Teams in Production of Knowledge. Science 2007, 316(5827), pp. 1036–1039. https://doi.org/10.1126/science.1136099. [22] Dzikowski, P. A Bibliometric Analysis of Born Global Firms. J. Bus. Res. 2018, 85, pp. 281-294. https://doi.org/10.1016/j.jbusres.2017.12.054. [23] Bornmann, L.; Daniel, H.-D. What Do We Know About the h Index? J. Am. Soc. Inf. Sci. Technol. 2007, 58(9), pp. 1381–1385. [24] Beaver, D.; Rosen, R. Studies in Scientific Collaboration: Part I. The Professional Origins of Scientific Co-authorship. Scientometrics 1978, 1(1), pp. 65-84. https://doi.org/10.1007/BF02016840. [25] Xu, Y.; Zeng, J.; Chen, W.; Jin, R.; Li, B.; Pan, Z. A Holistic Review of Cement Composites Reinforced with Graphene Oxide. Constr. Build. Mater. 2018, 171, pp. 291-302. https://doi.org/10.1016/j.conbuildmat.2018.03.147. [26] Mariën, P.; Ackermann, H.; Adamaszek, M.; et al. Consensus Paper: Language and the Cerebellum: An Ongoing Enigma. Cerebellum 2014, 13, pp. 386–410. https://doi.org/10.1007/s12311-013-0540-5. [27] Huang, Y.; Huang, Q.; Ali, S.; Zhai, X.; Bi, X.; Liu, R. Rehabilitation Using Virtual Reality Technology: A Bibliometric Analysis, 1996–2015. Scientometrics 2016, 109, pp. 1547–1559. [28] Chen, W.; Geng, Y.; Zhong, S.; Zhuang, M.; Pan, H. A Bibliometric Analysis of Ecosystem Services Evaluation from 1997 to 2016. Environ. Sci. Pollut. Res. 2020, 27, pp. 23503–23513. [29] Jain, J.; Walia, N.; Singh, S.; Jain, E. Mapping the Field of Behavioural Biases: A Literature Review Using Bibliometric Analysis. Manag. Rev. Q. 2021, 72, pp. 823–855. https://doi.org/10.1007/s11301-021-00215-y. [30] Chen, Y.; Chen, C.M.; Liu, Z.Y.; Hu, Z.G.; Wang, X.W. Methodological Functions of CiteSpace for Knowledge Mapping. Stud. Sci. Sci. 2015, 33(2). http://doi.org/10.16192/j.cnki.1003-2053.2015.02.00. [31] Joshy, A.A.; Rajan, R. Dysarthria Severity Classification Using Multi-Head Attention and Multi-Task Learning. Speech Commun. 2023, 147, pp. 1–11. https://doi.org/10.1016/j.specom.2022.12.004. [32] Ong, Y.Q.; Lee, J.; Chu, S.Y.; Chai, S.C.; Gan, K.B.; Ibrahim, N.M.; Barlow, S.M. Oral-Diadochokinesis Between Parkinson's Disease and Neurotypical Elderly Among Malaysian-Malay Speakers. Int. J. Lang. Commun. Disord. 2024. https://doi.org/10.1111/1460-6984.13025. [33] Gadenz, C.D.; Moreira, T.C.; Capobianco, D.M.; Cassol, M. Effects of Repetitive Transcranial Magnetic Stimulation in the Rehabilitation of Communication and Deglutition Disorders: Systematic Review of Randomized Controlled Trials. Folia Phoniatr. Logop. 2016, 67(2), pp. 97–105. https://doi.org/10.1159/000439128. [34] Hartelius, L.; Nord, L.; Buder, E.H. Acoustic Analysis of Dysarthria Associated with Multiple Sclerosis. Clin. Linguist. Phon. 1994, 9(2), pp. 95–120. https://doi.org/10.3109/02699209508985327. [35] Yunusova, Y.; Green, J.R.; Lindstrom, M.J.; Ball, L.J.; Pattee, G.L.; Zinman, L. Kinematics of Disease Progression in Bulbar ALS. J. Commun. Disord. 2009, 42(4), pp. 267–279. https://doi.org/10.1016/j.jcomdis.2009.07.003. [36] He, D.; Feenaughty, L.; Wan, Q. Global Acoustic Speech Temporal Characteristics for Mandarin Speakers with Parkinson's Disease During Syllable Repetition and Passage Reading. Am. J. Speech Lang. Pathol. 2023, pp. 1–15. https://doi.org/10.1044/2023_AJSLP-23-00062. [37] Wolfrum, V.; Lehner, K.; Heim, S.; Ziegler, W. Clinical Assessment of Communication-Related Speech Parameters in Dysarthria: The Impact of Perceptual Adaptation. J. Speech Lang. Hear. Res. 2023. https://doi.org/10.1044/2023_JSLHR-23-00105. [38] Peters, B.; Wiedrick, J.; Baylor, C. Effects of Aided Communication on Communicative Participation for People with Amyotrophic Lateral Sclerosis. Am. J. Speech Lang. Pathol. 2023, pp. 1–12. https://doi.org/10.1044/2023_AJSLP-22-00346. [39] Saz, I.; Alaca, R.; Yasar, E.; Tok, F.; Yilmaz, B. Medical Complications, Physical Function and Communication Skills in Patients with Traumatic Brain Injury: A Single Centre 5-Year Experience. Brain Inj. 2008, 22(10), pp. 733–739. https://doi.org/10.1080/02699050802304714. [40] Laaridh, I.; Meunier, C.; Fredouille, C. Perceptual Evaluation for Automatic Anomaly Detection in Disordered Speech: Focus on Ambiguous Cases. Speech Commun. 2019, 105, pp. 7–17. https://doi.org/10.1016/j.specom.2018.10.003. [41] Loweimi, E.; Yue, Z.; Bell, P.; Renals, S.; Cvetkovic, Z. Multi-Stream Acoustic Modelling Using Raw Real and Imaginary Parts of the Fourier Transform. IEEE/ACM Trans. Audio Speech Lang. Process. 2023, 31, pp. 876–890. https://doi.org/10.1109/TASLP.2023.3237167. [42] Jafari, D.; Simmatis, L.; Guarin, D.; Bouvier, L.; Taati, B.; Yunusova, Y. 3D Video Tracking Technology in the Assessment of Orofacial Impairments in Neurological Disease: Clinical Validation. J. Speech Lang. Hear. Res. 2023. https://doi.org/10.1044/2023_JSLHR-22-00321. [43] Chen, C. Science Mapping: A Systematic Review of the Literature. J. Data Inf. Sci. 2017, 2(2), pp. 1–40. https://doi.org/10.1515/jdis-2017-0006.
Copyright @ 2020-2035 Academic Education Publishing House All Rights Reserved