Integration of Large Language Models with IoT in Smart Agriculture to Improve Efficiency, Yield, and Quality
DOI: https://doi.org/10.62381/I245403
Author(s)
Tao Feng1, Hao Shen2, Xuecan Yang3, Jean-Marie Nianga4, Zefeng Wang2,3,4,5,*
Affiliation(s)
1Thinker Agricultural Machinery Co.,Ltd, Huzhou, Zhejiang, China
2College of Information Engineering, Anding Honors College, Huzhou University, Huzhou, Zhejiang, China
3IEIP, Institute of Education and Innovation in Paris, Paris, France
4Sino-Congolese Foundation for Development, Brazzaville, Congo
5ASIR, Institute -Association of intelligent systems and robotics, Paris, France
*Corresponding Author.
Abstract
This paper examines the novel integration of large language models (LLMs) with Internet of Things (IoT) technologies in the context of smart agriculture. The study emphasizes the transformative impact of LLMs in enhancing data-driven decision-making processes through advanced natural language processing capabilities. By employing IoT devices, comprehensive real-time data on environmental conditions, soil health, and crop status are collected and analyzed using LLMs, thereby facilitating the generation of actionable insights for precision agriculture. Key areas of improvement include optimized irrigation scheduling, targeted pest and disease management, and efficient resource utilization, which collectively contribute to increased crop yields and quality. The findings illustrate the potential of combining LLMs with IoT to create a sustainable, efficient, and high-yield agricultural ecosystem.
Keywords
Large Language Models (LLMs); Internet of Things (IoT); Smart Agriculture; Precision Agriculture; Data-driven Decision Making
References
[1]Priyadarshini I Sanikop, R. Nayak. Role of Translation in Agriculture Knowledge Management in India. 2011-10-01. DOI: 10.15373/2249555X/OCT2013/71 .
[2]Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30. DOI: 10.48550/arXiv.1706.03762 .
[3]Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877-1901. DOI: 10.48550/arXiv.2005.14165 .
[4]Losos, J. B. (2013). I.1 What Is Evolution. Princeton University Press. DOI: 10.1515/9781400848065-003 .
[5]Devlin, J., Chang, M. W., Lee, K., Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171-4186. DOI: 10.48550/arXiv.1810.04805 .
[6]OpenAI. (2020). GPT-3: Language Models are Few-Shot Learners. arXiv preprint. DOI: 10.48550/arXiv.2005.14165 .
[7]Nitin, Gupta, S. B. (2023). Artificial Intelligence in Smart Agriculture: Applications and Challenges. Journal of Applied Science and Technology. DOI: 10.55003/cast.2023.254427 .
[8]R. Negi, S. Dimri. (2022). Machine Learning Enabled Smart Farming: The Demand of the Time. 2022 International Conference on Power, Instrumentation, Control and Computing (PICC). DOI: 10.1109/PDGC56933.2022.10053335 .
[9]Awan, S., Ahmed, S., Hashim, M. Z. (2019). Smart Farm Intelligence Model to Uplift Farmers in Rural Pakistan. Wireless Communication and Mobile Computing, 2019. DOI: 10.11648/J. WCMC.20180604.11 .
[10]Gandhi, R. R. R., Chellam, J. A. I., Prabhu, T. N., Kathirvel, C., Sivaramkrishnan, M., Siva Ramkumar, M. (2022). Machine Learning Approaches for Smart Agriculture. 2022 6th International Conference on Computing Methodologies and Communication (ICCMC). DOI: 10.1109/ICCMC53470.2022.9753841 .
[11]Mat, I., Kassim, M. R. M., Harun, A. N., Yusoff, I. (2018). Smart Agriculture Using Internet of Things. 2018 IEEE Conference on Open Systems (ICOS). DOI: 10.1109/ICOS.2018.8632817 .
[12]Liu, F., Yan, X. (2022). The application of Machine Learning and IOT in Smart Agriculture. 2022 Global Conference on Robotics, Artificial Intelligence and Internet of Things (GCRAIT). DOI: 10.1109/GCRAIT55928.2022.00019 .
[13]Rahmawati, P. N. A., Jannah, N., Chusyairi, A. (2019). Perancangan Pertanian Unggul dengan Sistem TI-FARM Menggunakan Metode Agile. DOI: 10.35746/jtim.v1i3.46 .
[14]Patil, R., Patil, S. (2020). Cognitive Intelligence of Internet of Things in Smart Agriculture Applications. DOI: 10.1109/PuneCon50868.2020.9362449 .
[15]Anand, S., Shettigar, S., Goudar, S. S., Ohol, A. (2018). E-Agriculture A way to digitalization. DOI: 10.20894/ijdmta.102.007.002.010 .
[16]Sharma, R., Mishra, V., Srivastava, S. (2023). Enhancing Crop Yields through IoT-Enabled Precision Agriculture. DOI: 10.1109/ICDT57929.2023.10151422 .
[17]Shrestha, M., Khanal, S. (2020). Future prospects of precision agriculture in Nepal. DOI: 10.26832/24566632.2020.0503023 .
[18]Gyarmati, G., Mizik, T. (2020). The present and future of the precision agriculture. DOI: 10.1109/SoSE50414.2020.9130481 .
[19]Raju, S., Rao, M., Sudheer, N., Kavitharani, P. (2018). Agri-Iot: a Sustainable Environment for Improvement of Crops Revenue in the Field of Agriculture Using Iot. DOI: 10.14419/IJET.V7I2.32.15735 .
[20]Kori, S. M., Kori, M. A., Kori, A. (2021). AGROIoT - IoT Assisted Farming. DOI: 10.1109/ICMNWC52512.2021.9688374 .
[21]Jesi, V. E., Kumar, A., Hosen, B., David D, S. (2022). IoT Enabled Smart Irrigation and Cultivation Recommendation System for Precision Agriculture. DOI: 10.1149/10701.5953ecst .
[22]Navya, S. B. (2021). IoT in Agriculture. DOI: 10.48175/IJARSCT-1351 .
[23]Vadali, R., Sakhare, S. V., Patil, J., Nale, S. (2017). Technical Advances in Precision Farming. DOI: 10.5120/IJCA2017916039 .
[24]Patel, A., Pandey, K., Yadav, H., Saraswat, P. (2021). IOT Based System for Crop Prediction and Irrigation Control. DOI: 10.1109/upcon52273.2021.9667576 .
[25]Lad, A., Nandre, S., Raichurkar, K., Zarkhande, S., Charles, P. (2022). A Literature Survey on Smart Agriculture Monitoring and Control System Using IOT. DOI: 10.22214/ijraset.2022.40512 .
[26]Walling, S. (2020). An Overview on Internet of Things (IoT): Architecture, Technologies, Applications, Challenges. DOI: 10.22214/ijraset.2020.30841 .
[27]Hussain Shah, S., Yaqoob, I. (2016). A survey: Internet of Things (IOT) technologies, applications and challenges. DOI: 10.1109/SEGE.2016.7589556 .
[28]Liu, Y., Zhou, G. (2012). Key Technologies and Applications of Internet of Things. DOI: 10.1109/ICICTA.2012.56 .
[29]Alnahdi, A., Liu, S. (2017). Mobile Internet of Things (MIoT) and Its Applications for Smart Environments: A Positional Overview. DOI: 10.1109/IEEE.ICIOT.2017.26 .
[30]Sadowski, S., Spachos, P. (2020). Practical Application of Internet of Things in the Creation of Intelligent Services and Environments. DOI: 10.3389/friot.2022.912388 .
[31]Sonawane, S. (2019). Survey on Technologies, Uses and Challenges of IoT. DOI: 10.17577/IJERTV8IS120162 .
[32]Kaur, S., Sharma, S. (2023). Role of the Internet of Things in Smart Cities: A Review. DOI: 10.1109/ICACITE57410.2023.10182986 .
[33]Foerster, J., Costa, X., Prasad, R. V. (2020). Communications for IoT: Connectivity and Networking. DOI: 10.1109/MIOT.2020.9063399 .
[34]Alsubaei, F. S., Abuhussein, A., Shiva, S. (2018). An Overview of Enabling Technologies for the Internet of Things. DOI: 10.1002/9781119456735.CH3 .
[35]Rahmani, H., Shetty, D., Wagih, M., Ghasempour, Y., Palazzi, V., Carvalho, N. B., Correia, R., Costanzo, A., Vital, D., Alimenti, F., Kettle, J. D. N., Masotti, D., Mezzanotte, P., Roselli, L., Grosinger, J. (2023). Next-Generation IoT Devices: Sustainable Eco-Friendly Manufacturing, Energy Harvesting, and Wireless Connectivity. DOI: 10.1109/JMW.2022.3228683 .
[36]Kouah, R., Alleg, A., Laraba, A., Ahmed, T. (2018). Energy-Aware Placement for IoT-Service Function Chain. DOI: 10.1109/CAMAD.2018.8515003 .
[37]Sinha, S. K., Chander, S., Chaudhary, R. (2023). Prospects and Challenges of Different Geometries of TFET Devices for IoT Applications. DOI: 10.2174/2210681213666230516162511 .
[38]Cecchinel, C., Jimenez, M., Mosser, S., & Riveill, M. (2014). An Architecture to Support the Collection of Big Data in the Internet of Things. DOI: 10.1109/SERVICES.2014.83 .
[39]Sowe, S. K., Kimata, T., Dong, M., & Zettsu, K. (2014). Managing Heterogeneous Sensor Data on a Big Data Platform: IoT Services for Data-Intensive Science. DOI: 10.1109/COMPSACW.2014.52 .
[40]Yang, C., Puthal, D., Mohanty, S., & Kougianos, E. (2017). Big-Sensing-Data Curation for the Cloud is Coming: A Promise of Scalable Cloud-Data-Center Mitigation for Next-Generation IoT and Wireless Sensor Networks. DOI: 10.1109/MCE.2017.2714695 .
[41]AlOtaibi, M., Tawalbeh, L., & Jararweh, Y. (2016). Integrated Sensors System Based on IoT and Mobile Cloud Computing. DOI: 10.1109/AICCSA.2016.7945812 .
[42]Islam, M. S., Sobhan, S., Valero, M., Shahriar, H., Zhao, L., & Ahamed, S. (2021). Framework for Collecting Data from Specialized IoT Devices - An Application to Enhance Healthcare Systems. DOI: 10.1109/icdh52753.2021.00045 .
[43]Richardson, D., Lin, A. C., & Pecarina, J. M. (2017). Hosting Distributed Databases on Internet of Things-Scale Devices. DOI: 10.1109/DESEC.2017.8073855 .
[44]Fonović, D., Sirotić, Z., Tanković, N., & Sovilj, S. (2021). Low-Power Wireless IoT System for Indoor Environment Real-Time Monitoring and Alerting. DOI: 10.23919/mipro52101.2021.9596916 .
[45]Barbosa, C. M., Mota, V. F. S., Gomes, R. L., & Filho, J. D. G. (2019). Sensor Store: Uma Loja de Dados de IoT Usando Tangle. DOI: 10.5753/wblockchain.2019.7484 .
[46]Surya Mallika, B., & Sivaramaraju, V. V. (2019). Adaptive Framework Combining Sensors and IoT for Data Monitoring in Restricted Areas. DOI: 10.35940/ijitee.k1574.0881119 .
[47]Nigam, A., Garg, S., Agrawal, A., & Agrawal, P. (2019). Crop Yield Prediction Using Machine Learning Algorithms. DOI: 10.1109/ICIIP47207.2019.8985951 .
[48]Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine Learning in Agriculture: A Review. DOI: 10.3390/s18082674 .
[49]Suguna, R., & Rani, R. (2020). Descriptive and Predictive Analytics of Agricultural Data Using Machine Learning Algorithms. DOI: 10.1201/b22627-2 .
[50]Rao, I., Shirgire, P., Sanganwar, S., Vyawhare, K., & Vispute, S. (2021). An Overview of Agriculture Data Analysis Using Machine Learning Techniques and Deep Learning. DOI: 10.1007/978-3-030-84760-9_30 .
[51]SriramRakshith, K. (2019). A Survey on Crop Prediction Using Machine Learning Approach. DOI: 10.22214/ijraset.2019.4542 .
[52]Ramu, K., & Priyadarsini, K. (2021). A Review on Crop Yield Prediction Using Machine Learning Methods. DOI: 10.1109/ICOSEC51865.2021.9591764 .
[53]Ed-Daoudi, R., Alaoui, A., Ettaki, B., & Zerouaoui, J. (2023). Improving Crop Yield Predictions in Morocco Using Machine Learning Algorithms. DOI: 10.12911/22998993/162769 .
[54]Patel, K., & Patel, H. B. (2021). A Comparative Analysis of Supervised Machine Learning Algorithm for Agriculture Crop Prediction. DOI: 10.1109/icecct52121.2021.9616731 .
[55]Kim, S.-W., & Kim, Y. (2021). A Study on the Application of Machine Learning Algorithm to Predict Crop Production. DOI: 10.5762/kais.2021.22.7.403 .
[56]Tripathi, A., Rathore, B. S., & Singh, D. (2023). Survey Paper on Agricultural Dataset for Improving Crop Yield Prediction Using Machine Learning Algorithms. DOI: 10.5120/ijca2023922571 .
[57]Vidhya, K., George, S., Suresh, P., Brindha, D., & Jemima Jebaseeli, T. (2023). Agricultural Farm Production Model for Smart Crop Yield Recommendations Using Machine Learning Techniques. DOI: 10.3390/engproc2023059020 .
[58]ManendraSai, D., Dekka, S., Rafi, M., Rama Durga Apparao, M., Talachendri Suryam, G., & Ravindranath, G. (2023). Machine Learning Techniques Based Prediction for Crops in Agriculture. DOI: 10.53555/sfs.v10i1s.814.
[59]Snyder, D. P., Waldron, J. K., & Specker, D. R. (1992). Economics of Integrated Crop Management for Field Crops.
[60]Acharya, M., & Thapa, R. (2015). Remote sensing and its application in agricultural pest management. DOI: 10.3126/AEJ.V16I0.19839 .
[61]Singh, P., Pawar, P., Takwale, P., & Karia, D. (2017). Agriculture monitoring system AMS. DOI: 10.1109/ICECDS.2017.8389535 .
[62]Lavanya, E., Indra, E., & Priyaradhikadevi, T. (2021). Agriculture Improvement Using Iot. DOI: 10.1109/ICSCAN53069.2021.9526509 .
[63]Suneja, B., Negi, A., Kumar, N., & Bhardwaj, R. (2022). Cloud-based Tomato Plant Growth and Health Monitoring System using IoT. DOI: 10.1109/ICIEM54221.2022.9853170 .
[64]Tilva, V., Patel, J., & Bhatt, C. B. (2013). Weather based plant diseases forecasting using fuzzy logic. DOI: 10.1109/NUICONE.2013.6780173 .
[65]Mangala, R., & Padmapriya, A. (2019). Visualizing the impact of climatic changes on Pest and Disease Infestation in Rice (Oryza sativa L.). DOI: 10.35940/ijrte.c6522.098319 .
[66]Hodson, A., & Lewis, E. (2016). Managing for soil health can suppress pests. DOI: 10.3733/CA.2016A0005 .
[67]Tinoco, T. J., Da Silva, P. L., & Da Rocha, A. P. S. (2023). MANEJO INTEGRADO DE PRAGAS E DOENÇAS EM SISTEMAS AGRÍCOLAS. DOI: 10.56083/rcv3n11-135 .
[68]Qi, A., & Fitt, B. (2014). Can Crop Disease Control Cope with Climate Change. DOI: 10.1564/V25_DEC_05 .
[69]Alexandridis, N., Marion, G., Chaplin-Kramer, R., Dainese, M., Ekroos, J., Grab, H., Jonsson, M., Karp, D., Meyer, C., O'Rourke, M., Pontarp, M., Poveda, K., Seppelt, R., Smith, H. G., Martin, E. A., & Clough, Y. (2021). Models of natural pest control: Towards predictions across agricultural landscapes. DOI: 10.1016/j.biocontrol.2021.104761 .
[70]Samui, R., Sabale, J. P., & Karthikeyan, K. (2021). Weather-based crop protection stewardship at Pattambi, Kerala. DOI: 10.54302/mausam.v61i4.885 .
[71]Ali, A. A., & Mohamed, W. M. (2018). Using a Business Activity Monitoring and SOA for a Real-Time ETL. DOI: 10.5120/ijca2018916152 .
[72]Liu, J., Hu, C., & Yuan, H. (2010). Application of Web services on the real-time data warehouse technology. DOI: 10.1109/ICAEE.2010.5557550 .
[73]Fabbricatore, C., Boley, H., & Karduck, A. (2012). Machine learning for resource management in smart environments. DOI: 10.1109/DEST.2012.6227910 .
[74]Ali, A. A., & Mohamed, W. M. (2016). Monitoring Business Transactions for a Real-time Data Warehouses. DOI: 10.5120/IJCA2016910828 .
[75]Li, J. P. (2013). Application Research on Real-Time Database System Model Based on Distributed System of Cloud Manufacturing. DOI: 10.4028/www.scientific.net/AMM.427-429.2110 .
[76]Suneja, B., Negi, A., Kumar, N., & Bhardwaj, R. (2022). Cloud-based Tomato Plant Growth and Health Monitoring System using IoT. DOI: 10.1109/ICIEM54221.2022.9853170 .
[77]Groen, A., & Walsh, S. (2013). Introduction to the Field of Emerging Technology Management. DOI: 10.1111/caim.12019 .
[78]Reiss, T., & Millar, K. (2014). Assessment of Emerging Science and Technology: Integration Opportunities and Challenges. DOI: 10.1093/SCIPOL/SCU036 .
[79]Danilin, I. V. (2018). Development of Perspective Technologies: Challenges for Scientific-Technological and Innovation Policy. DOI: 10.24833/2071-8160-2018-6-63-255-270 .
[80]Adedeji, Y. (2021). Exploring the Role of Public Policy in Adapting to the Challenges and Opportunities of Emerging Technologies. DOI: 10.55885/jprsp.v1i3.237 .
[81]Valle-Cruz, D., & Gil-García, J. R. (2022). Emerging Technologies in Local Governments: A Systematic Literature Review with the PRISMA Methodology. DOI: 10.15174/remap.v11i21.376 .
[82]Sørensen, K. H. (2016). Beyond Innovation: Towards an Extended Framework for Analysing Technology Policy. DOI: 10.5324/NJSTS.V1I1.2122 .
[83]Malloy, T. F. (2013). Integrating Technology Assessment into Government Technology Policy. DOI: 10.4337/9781782545644.00012 .
[84]Nijkamp, P., & Stöhr, W. (1988). Technology Policy at the Crossroads of Economic Policy and Physical Planning. DOI: 10.1068/c060371 .
[85]Park, J. O., Yoo, T. S., Lee, I. U., & Jang, D. H. (2000). Practical Strategies for Technological Innovation in the 21st Century. DOI: 10.15174/remap.v11i21.376 .
[86]Choi, Y. R., & Song, W. J. (2000). A New Paradigm in Science and Technology Policy for the Knowledge-Based Society. DOI: 10.15174/remap.v11i21.376.