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Abstract: The segmentation model based on
traditional convolution focuses more on
local features during training, while
Transformers excel in long-range modeling
tasks but lack direct advantages in short-
range feature analysis. To achieve fine-
grained segmentation of pellet
microstructure images more effectively, we
propose a Multi-Scale Collaborative
Learning Network for Pellet facies
microstructure image Segmentation
(MCL_NET). The model integrates
information from different scales to achieve
pixel recovery and precise boundary
segmentation of pellet microstructure
images. In the segmentation task of pellet
ore microstructure images, MCL-NET
demonstrates superior experimental results,
allowing for a more accurate representation
of the shapes and boundaries of the pellet
microstructures.
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1. Introduction
With the accelerated research in deep learning
and the rapid advancement of computational
power, utilizing Convolutional Neural
Networks (CNN) for deep semantic
information extraction in images has become a
significant focus in the field of computer
vision. the Fully Convolutional Network
(FCN)[1] is designed with a fully
convolutional structure to accomplish pixel-
level image classification tasks. the U-Net
series models employ a symmetrical encoder-
decoder structure, enhancing the segmentation
performance at material boundaries [2]. the
Deeplab series, developed by Google's team,

aims to provide more precise boundary
segmentation solutions [3–5]. However, due to
the limited receptive field of convolution, these
models struggle to establish long-range spatial
dependencies and lack the capability to
perceive global information in images.
Transformer has gained widespread attention
in the field of NLP for its ability to capture
long-range dependencies in sequences [6].
Many researchers have extended the
Transformer to the computer vision domain.
By dividing images into patches and mapping
them into sequences, it enhances the spatial
modeling capabilities of images [7, 8].
Howeverthe Transformer introduces
substantial computational complexity. To
reduce computational costs, image resolution
needs to be progressively lowered during
training, which is a key reason for the loss of
some texture information in images.
Pellets have uniform particle size, high iron
content, high strength, and good reducibility,
making them high-quality raw materials for
blast furnace ironmaking [9]. the segmentation
and quantitative characterization of pellet
microstructure images are crucial steps in
studying the mechanisms affecting pellet
performance. However, the complex
distribution of foreground and background in
microstructure images, along with the similar
material structures, uneven spatial distribution,
and class imbalance, pose challenges.
Achieving accurate segmentation of pellet
microstructure images, especially the precise
delineation of microstructural boundaries, is of
great significance.
We propose model named Multi-Scale
Collaborative Learning Network for Pellet
Facies Microstructure Image Segmentation
(MCL-NET). In the model's encoder, we
employ a dual-backbone assisted fusion
encoding strategy, combining the local feature
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extraction capability of convolution with the
global modeling strength of Transformer. This
approach enhances attention to the target in
both spatial and channel dimensions.
Additionally, a bidirectional pyramid structure
is used to model global context and multi-scale
feature information, which serves as
supplementary features in the decoding phase.
During decoding, shallow image detail textures
are progressively fused with deep abstract
features to achieve pixel-level classification of
pellet microstructure images.

2. Related Work
Semantic segmentation is a fundamental task
in computer vision, and the introduction of U-
Net has highlighted the potential of skip
connection structures in preserving sensitive
detail information. However, in convolution-
based encoder architectures, a single
convolution operation can only capture local
pixel relationships within the size of the
convolutional kernel. To obtain global features,
continuous down-sampling operations are
required, which inevitably lead to the loss of

some information.
The Vision Transformer can utilize richer
global information early in the encoding phase,
fundamentally overcoming the limitations of
convolution. the Swin Transformer uses a pure
Transformer structure for feature extraction
and has achieved excellent results across
various computer vision tasks. TransUNet [10]
is an innovative segmentation model where
both convolution and Transformer work
together in the encoding phase. To address the
limitations of convolution in local feature
extraction and the computational complexity of
the Transformer, TransUNet uses features
extracted by convolution as input for the
Transformer to model contextual feature
relationships during the encoding phase.

3. Methods

3.1 MCL-NETModel Structure
This paper presents a multi-scale collaborative
learning model for pellet microstructure image
segmentation, referred to as MCL-NET. the
model structure is illustrated in Figure 1.

Figure 1. Structure of the MCL-NETModel
The model is primarily composed of three
modules. In the encoding phase, the FCC
module and DPFA module are employed to
complement local features and spatial features,
as well as to supplement contextual and multi-

scale features. In the decoding phase, the FUM
module utilizes shallow features as
supplementary information to achieve accurate
image segmentation.
MCL-NET employs a parallel backbone
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feature extraction encoder consisting of the
convolutional structure Mobilenetv2[11] with a
reverse residual structure and the Swin
Transformer. the Mobilenetv2 architecture
introduces the reverse residual structure and
linear bottleneck layers. the Swin Transformer
incorporates a sliding window attention
mechanism. the reverse residual structure
utilizes depthwise separable convolutions for
feature extraction, while replacing the original
nonlinear activation layer with Relu6 to
perform linear activation transformations. the
Swin Transformer adopts a hierarchical
approach and sliding window mechanism. In
the encoder, the Swin Transformer is divided
into four stages based on the resolution, with
feature resolutions of 1/2, 1/4, 1/8, and 1/16 of
the input image resolution, respectively.

3.2 Feature Cross-Compensation Module
To address the complex spatial information
distribution and the requirements for fine
segmentation of local edges in pellets, this
model incorporates a feature cross-
compensation module. This module enhances
the model's attention to complex image
boundaries and textures, and its structure is
illustrated in Figure 2.

Figure 2. Structure of the FCC
This module first receives the features
obtained from the encoder. It employs spatial
attention and channel attention to enhance the
feature extraction capabilities of both
convolution and Transformer in the spatial and
channel dimensions. the input results before
and after applying attention are concatenated,
and a residual structure is used to maintain
feature integrity. To recover the representation
of detailed features in the image, a new
Complementary Cross Attention (CCA)
mechanism is introduced in this module. This
mechanism uses low-level spatial information
to re-weight the higher-level pixel positions,
guiding the higher-level feature learning
towards more important and finer targets.

3.3 Dual-direction Pyramid Feature
Aggregation

The model includes a horizontal Atrous Spatial
Pyramid Pooling (ASPP) and a vertical
Pyramid Feature Aggregation (PFA) module to
achieve cross-scale feature aggregation.
Additionally, grouped convolutions and
channel shuffling are utilized for improved
feature extraction. Finally, attention calibration
is performed on the channel and spatial
dimensions for each feature group, with a
residual connection to reduce feature loss. the
PFA module facilitates cross-scale feature
aggregation, as illustrated in Figure 3.

Figure 3. Structure of the PFA
This module receives the output results from
the FCC module at different stages and the
output from the ASPP module as inputs. It
aggregates feature information from different
receptive fields and scales, utilizing channel
shuffling and grouped convolutions to achieve
information fusion across various scales.
Attention calibration is performed on each
group of features in both the channel and
spatial dimensions, and a residual connection
is used to reduce feature loss. Ultimately,
multiple groups of features are fused to
achieve normalization and grouped weighting,
resulting in the fused features . the above
process is defined as follows.

Here, represents the feature fusion
and channel shuffling operations,
while denotes the grouped
convolution. and represent element-wise
multiplication and addition operations,
respectively. indicates batch
normalization, and is used as the
nonlinear activation function.

4. Experiments and Results Analysis

4.1 Dataset and Experimental Setup
First, the experimental pellets were collected,
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and the pellets were sliced to prepare thin
sections for observation. Polarizing
microscopy was used to examine the thin
section samples, and image data were collected.
A slider was used to cut the image samples,
and Labelme was employed to annotate the
image data. A total of 17, 100 training images
and 4, 500 validation images were obtained.
We build the MCL-NET model based on the
Python 3.9 environment and the PyTorch
framework, training the model on an Nvidia
RTX 3090 GPU with 24 GB of memory.
During training, the learning rate is set to
0.007 and linearly decays with the number of
iterations. the model is trained using the SGD
optimizer with a momentum of 0.9, with a
batch size of 4 for 700 epochs.

4.2 Experiment Result
To validate the performance of the model in
the pellet microstructure image segmentation
task, we compared the MCL-NET model with
six other outstanding semantic segmentation
models. We use Pixel Accuracy (PA), Mean
Pixel Accuracy (MPA), and Mean Intersection
over Union (MIoU) to assess the segmentation
accuracy of the model. To validate the
performance of the model algorithm, we also
introduce three additional metrics: the number
of parameters (Params), the number of
floating-point operations (FLOPs), and the
frames per second (FPS). The experimental
results are presented in Table 1.

Table 1 Test Result Comparison of Different Networks in Pellet Microstructure Images
Methods PA MPA MIoU Params FLOPs/G FPS
U-Net [2] 90.23 86.64 77.43 35.89 3.314 20.2
Deeplabv3+[5] 90.46 88.16 78.22 37.22 4.729 19.3
TransUNet [10] 91.18 87.93 78.57 39.48 3.482 19.5
Swin-Unet [12] 90.88 88.07 77.89 42.68 4.745 20.5
MISS-Former [13] 92.54 88.36 79.76 40.58 4.903 21.2
MCL-NET 93.14 89.31 81.56 41.34 4.158 20.9
From Table 1, it can be seen that for the pellet
microstructure image segmentation task, the
MCL-NET model improves the PA by 0.6 to
2.91 percentage points. the MPA is improved
by 0.95 to 2.67 percentage points, and the
Mean Intersection over Union MIoU is
enhanced by 1.8 to 7.01 percentage points.
This model has a large number of parameters,
however, compared to TransUNet, Swin-Unet,
and MISSFormer, MCL-NET demonstrates
better performance in terms of FLOPs. the FPS
of MCL-NET is 0.3 lower than that of the
optimal model.
Five images (a) to (e) were randomly selected
from the validation set to compare the original
images, the segmentation results of seven
models in the pellet microstructure image
segmentation task, and the annotated images.
the segmentation results are shown in Figure 4.
By observing the results of different models in
the pellet microstructure image segmentation
task shown in Figure 4, MCL-NET
demonstrates superior performance in complex
spatial segmentation tasks. It achieves more
precise segmentation of small objects even in
cases of extreme spatial distribution imbalance
and data label imbalance. Additionally, MCL-
NET provides more refined processing of the
image's edge textures in the microstructural

material.

Figure 4. Segmentation Visualization Result
Examples for Pellet Microstructure

5. Conclusion
This paper presents a multi-scale collaborative
learning model for pellet microstructure image
segmentation, designed based on an encoder-
decoder architecture that integrates the
advantages of dual backbone feature extraction
and multi-scale feature information. the
encoder employs the FCC module to enhance
the feature extraction capabilities of the
backbone network, while a new attention
mechanism improves the model's focus on
complex regions. the design of the
bidirectional pyramid structure enables the
model to achieve better spatial modeling
capabilities. Experimental results show that the
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model significantly improves segmentation
accuracy for material boundaries and small
particle substances.
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