Examplement Education
 **Enhanced Fault Diagnosis of Vertical Friction Torque Using

Improved VGG-CNN Network

Xiangjun Du¹⁺, Ling Yu²

¹School of Mechanical Engineering, Tiangong University, Tianjin, China** *Industry Science and Engineering Vol. 1 No. 7, 2024*
 **It Diagnosis of Vertical Friction Torque Using

Improved VGG-CNN Network**

Xiangjun Du^{1,*}, Ling Yu²
 *Iechanical Engineering, Tiangong University, Tianjin, China Industry Science and Engineering Vol. 1 No. 7, 20***

NOSIS Of Vertical Friction Torque Using**
 **Xiangjun Du^{1*}, Ling Yu²
** *Engineering, Tiangong University, Tianjin, China***
** *Xiangjun Du^{1*}, Ling Yu²

<i>Procational 11*
 11
 11
 11
 11
 12
 14
 *2Zoontonal Technical Colleges College; Tianjin, China***
** *2Tianjin Light Industry Vocational Technical College; Tianjin, China***
** *²T Findustry Science and Engineering Vol. 1 No.*
 Austry Science and Engineering Vol. 1 No.
 Corresponding Author.
 Corresponding Author.
 Corresponding Author.
 Solutional Technical College; Tianjin, China

*Corre

**Enhanced Fault Diagnosis of Vertical Friction

Improved VGG-CNN Networl

Xiangjun Du^{1,*}, Ling Yu²

¹School of Mechanical Engineering, Tiangong University, ²

²Tianjin Light Industry Vocational Technical College; Financed Fault Diagnosis of Vertical Friction**
 follow and the URG-CNN Network
 Siangjun Du^{1,}, Ling Yu²

¹School of Mechanical Engineering, Tiangong University, Tian

²Tianjin Light Industry Vocational Technic* **The Endine Consumer School of Mechanical School VGG-CNN Network**
 Thermography (IRT)
 Theodof Mechanical Engineering, Tiangong University, Tianjin, Changong ²Tianjin Light Industry Vocational Technical College; Tianj **diagnostic rates of friction to the friction of Mechanical Engineering, Tiangong University, Tianjin, Chinemain of** *College: Tianjin Cight Industry Vocational Technical College: Tianjin, Chinemain in the <i>Corresponding Au* **upproved vCG-CTTT TVCCWTA**

Value of Mechanical Engineering, Tiangong University, Tian

²Tianjin Light Industry Vocational Technical College; Tianjin

*Corresponding Author.
 Abstract: This paper presents a CNN-based Faultion School of Mechanical Engineering, Tiangong University, Tianjin,

¹ *School of Mechanical Engineering, Tiangong University, Tianjin, C

² <i>Tianjin Light Industry Vocational Technical College; Tianjin, C
 fau* **Example 1. Example 1. We all the statistical College:** Transferrencent *College:* Transferrencent *College:* Transferrencent *College:* Transferrencent *College:* Transferrencent **Abstract:** This paper presents a CNN**imaging the study of Mechanical Engineering, Tangong University, Tianjin, C**

²Tianjin Light Industry Vocational Technical College; Tianjin, C

*Corresponding Author.
 imaging the study of the study of the study of the Example of the six school of Mechanical Engineering, Lungong Conversity, Lungong 2 Tiany * Corresponding Author.
 Abstract: This paper presents a CNN-based bearing torque is **fault diagnosis method utilizing Infrared** Friangin Ligni mausry vocational recentral College; Frany

*Corresponding Author.
 Abstract: This paper presents a CNN-based bearing torque is

fault diagnosis method utilizing Infrared demonstrates that ver

diagnostic Corresponaing Author.
 Abstract: This paper presents a CNN-based

fault diagnosis method utilizing Infrared

demonstrates that vertical Thermography (IRT) to improve the low

torque bearing senhance

diagnostic rates of Abstract: This paper presents a CNN-based
fault diagnosis method utilizing Infrared
Thermography (IRT) to improve the low
torque bearings e
diagnostic rates of friction torque faults in
allowing them to be
upright placemen Abstract: This paper presents a CNN-based
fault diagnosis method utilizing Infrared
fault diagnosic rates of friction torque faults in
diagnostic rates of friction torque faults in
allowing them to bettee
upright placement **Example 19 Allert Constant Const** Tauti diagnosis method utilizing infrared demonstrates that the diagnosit discreption diagnosite rate of diagnosite rates of friction torque faults in a lowing them to upright placements and to address bearing torques, whi **Thermography (IKT)** to improve the tow the coalings emances load

diagnostic rates of friction torque balls in a lowing them to better withstand
 quright placements and to address bearing torques, while also reducing ax **attention** and the datents and the datents and the and the summing the service in a test bench. Employing non-
 atults in a test bench. Employing non-
 atternative, non-contact infrared thermal Additionally, vertice
 compared accuracy and the and the control of the station and performance evaluation and performance evaluation and performance evaluation and the classification and the control of the control of the control of the perfor **The set of the set of t nestructive, non-contact infrared thermal** Additionality, vertical conductriate and minimizion and minimizion and animaged outer ring, defective Current fault diagnosis remarble, insufficient lubrication, and based, stati maging eccinology, the study conducts tests

across is the marginal and

inner ring, damaged outer ring, defective

inner ring, damaged outer ring, defective

Current fault diag

marble, insufficient lubrication, and based across six scenarios: uncannaged, damaged

inner ring, damaged onter ring, defective

marble, insufficient lubrication, and based, statistical, and

damaged inner and outer ring bearings.

This article implements a thermal mner ring, damaged outer ring, detective

damaged inner and outer ring bearings.

damaged inner and outer ring bearings.

damaged inner and outer ring bearings.

This article implements a thermal image

offers a non-invasi marbie, insulfied it turncation, and based, statistical, a

diamaged inner and outer ring bearings.

This article implements a thermal image

offers a non-invasive, n

processing technique based on two-

condition monitori **annaged inner and outer ring bearings.** approaches. Initiated included inter-
 This article implements a thermal image offers a non-invasive, non-
 processing technique based on two- condition monitoring, delived
 di This article implements a thermal image

processing technique based on two

dimensional discrete wavelet transform,

and reliability [3]. Tradition

combining VGG Net model with CBAM

diagnosis methods generate

attention processing tecnnique based on two
dimensional discrete wavelet transform
combining VGG Net model with CBAN
attention mechanism to improv
classification accuracy while reducin
training time. Convolutional neur:
networks wer **EXECUTE:** The model with CBAM diagnosis met
 Exabsification mechanism to improve and struggle

classification accuracy while reducing
 Convolutional neural limitations v
 Exabsification and performance evaluation, C **Example 10 Example 10 Example 10 CHATE CONSTRATIGON EXAMPLE TRANGE CONVIDUAL THAT CONVIDUAL CONVIDUAL CONTABUTION**
 Fraining time. Convolutional neural limitations with its
 Example the energy dentifiers been e Example the manning time and training the convolutional neural imitations with
 Networks were then employed for fault capabilities.
 Confinition and performance evaluation,
 Common bearing
 Report vector machines. Training time. Convolutional neural

networks were then employed for fault

classification and performance evaluation,

demonstrating superior results compared to

support vector machines. This approach

effectively identi classification and performance evaluation
demonstrating superior results compare
support vector machines. This appre
effectively identifies bearing torque fa
achieving an impressive 99.80% accura
classifying faulty bearing

achieving an impressive 99.80% accuracy in

classifying faulty bearings, indicating its

often requires e:

broad applicability.

Keywords: Infrared Thermography;

Evaluation Torque; Convolutional Neural

eliminating the n classifying faulty bearings, indicating its

broad applicability.

Leading to subpar classifica

Keywords: Infrared Thermography;

automatically extract feature

Friction Torque; Convolutional Neural

Neural

Methines;

Pr **Examplicability.**
 Examplicability. Friction Torque; Convolutional Neural aliminating extract feat
 Examplement Friction Torque; Convolutional Neural aliminating the need for **r**
 Networks; Support Vector Machines; Surface Convolutional net

Friction Torque; Convolutional Neural

Networks; Support Vector Machines;

Devicous studies have

Dearings; Fault Diagnosis

1. Introduction

Dearings, as a key component of friction

Dearings, a **Exerces Searing Convolutional Neural**
 Exerces Support Vector Machines; automatically extract
 Friction Torque; Convolutional Neural
 Exerces Exerces
 Exerces Searings, **Fault Diagnosis**
 Exerces Exerces
 Exerc Friction Torque; Convolutional Neural

Metworks; Support Vector Machines; Previous studies have appliced

imaging for bearing fault Diagnosis

1. Introduction

Bearings, as a key component of friction

election

depending

y Science and Engineering Vol. 1 No. 7, 2024
 ideal. Friction Torque Using
 NN Network

Ling Yu²
 pagong University, Tianjin, China
 hnical College; Tianjin, China
 Author.
 Author.

bearing torque is cruci **The manufacture of Friction Torque Using**
 Charge Trive State Constrained SNN Network

Ling Yu²
 Manical College; Tianjin, China
 Author.
 Author.

bearing torque is crucial. This study

demonstrates that verti **Tical Friction Torque Using**
 **Compary Transform Willing Yu²

Transform University, Tianjin, China
** *Author.***

Author.

bearing torque is crucial. This study

demonstrates that vertical placement of friction

torque bea EXECUTE:**
 EXECUTE:
 EXEC THIN INEUWOFK

Ling Yu²

rigong University, Tianjin, China

hnical College; Tianjin, China

Author.

bearing torque is crucial. This study

demonstrates that vertical placement of friction

torque bearings enhances lo Ling Yu²
 Magong University, Tianjin, China
 Author.
 Author.
 Author.
 bearing torque is crucial. This study

demonstrates that vertical placement of friction

torque bearings enhances load capacity,

allowing Ling Yu²

Higheral College; Tianjin, China

Antical College; Tianjin, China

Author.

Author.

bearing torque is crucial. This study

demonstrates that vertical placement of friction

torque bearings enhances load capaci Ling Yu²

ingong University, Tianjin, China

hinical College; Tianjin, China

Author.

bearing torque is crucial. This study

demonstrates that vertical placement of friction

torque bearings enhances load capacity,

al maintain College; Tianjin, China

thical College; Tianjin, China

Author.

bearing torque is crucial. This study

demonstrates that vertical placement of friction

torque bearings enhances load capacity,

allowing them to *Author.*
 Author.
 Author.
 bearing torque is crucial. This study

demonstrates that vertical placement of friction

torque bearings enhances load capacity,

allowing them to better withstand forces and

torques, wh Author.

bearing torque is crucial. This study

demonstrates that vertical placement of friction

torque bearings enhances load capacity,

allowing them to better withstand forces and

torques, while also reducing axial lo bearing torque is crucial. This study
demonstrates that vertical placement of friction
torque bearings enhances load capacity,
allowing them to better withstand forces and
torques, while also reducing axial load, which
ben bearing torque is crucial. This study
demonstrates that vertical placement of friction
torque bearings enhances load capacity,
allowing them to better withstand forces and
torques, while also reducing axial load, which
ben

bearing torque is crucial. This study
demonstrates that vertical placement of friction
torque bearings enhances load capacity,
allowing them to better withstand forces and
torques, while also reducing axial load, which
ben demonstrates that vertical placement of friction
torque bearings enhances load capacity,
allowing them to better withstand forces and
torques, while also reducing axial load, which
benefits lifespan and performance.
Additi torque bearings enhances load capacity,
allowing them to better withstand forces and
torques, while also reducing axial load, which
benefits lifespan and performance.
Additionally, vertical orientation improves
lubrication allowing them to better withstand forces and
torques, while also reducing axial load, which
benefits lifespan and performance.
Additionally, vertical orientation improves
lubrication and minimizes wear, as gravity
helps ma torques, while also reducing axial load, which
benefits lifespan and performance.
Additionally, vertical orientation improves
lubrication and minimizes wear, as gravity
helps maintain stability.
Current fault diagnosis met benefits litespan and performance.

Additionally, vertical orientation improves

lubrication and minimizes wear, as gravity

helps maintain stability.

Current fault diagnosis methods include rule-

based, statistical, and capabilities. Iubrication and minimizes wear, as gravity
helps maintain stability.
Current fault diagnosis methods include rule-
based, statistical, and physical model
approaches. Infrared thermal imaging (IRT)
offers a non-invasive, no helps maintain stability.
Current fault diagnosis methods include rule-
based, statistical, and physical model
approaches. Infrared thermal imaging (IRT)
offers a non-invasive, non-contact solution for
condition monitoring Current fault diagnosis methods include rule-
based, statistical, and physical model
approaches. Infrared thermal imaging (IRT)
offers a non-invasive, non-contact solution for
condition monitoring, delivering high accuracy based, statistical, and physical model
approaches. Infrared thermal imaging (IRT)
offers a non-invasive, non-contact solution for
condition monitoring, delivering high accuracy
and reliability [3]. Traditional mechanical f

demonstrating superior results compared to algorithms include m

support vector machines. This approach methods such as superfectively identifies bearing torque faults,

achieving an impressive 99.80% accuracy in eural net support vector machines. This approach

effectively identifies bearing torque faults,

classifying faulty bearings, indicating its

classifying faulty bearings, indicating its

classifying faulty bearings, indicating its
 effectively identifies bearing torque faults, (SVM), k-nearest neight

achieving an impressive 99.80% accuracy in neural networks (ANN)

classifying faulty bearings, indicating its often requires extensive

broad applicabi approaches. Infrared thermal imaging (IRT)
offers a non-invasive, non-contact solution for
condition monitoring, delivering high accuracy
and reliability [3]. Traditional mechanical fault
diagnosis methods generate conside offers a non-invasive, non-contact solution for
condition monitoring, delivering high accuracy
and reliability [3]. Traditional mechanical fault
diagnosis methods generate considerable noise
and struggle to detect issues l condition monitoring, delivering high accuracy
and reliability [3]. Traditional mechanical fault
diagnosis methods generate considerable noise
and struggle to detect issues like lubricant
deficiency. In contrast, IRT overc and reliability [3]. Traditional mechanical fault
diagnosis methods generate considerable noise
and struggle to detect issues like lubricant
deficiency. In contrast, IRT overcomes these
limitations with its rapid, non-dest diagnosis methods generate considerable noise
and struggle to detect issues like lubricant
deficiency. In contrast, IRT overcomes these
limitations with its rapid, non-destructive
capabilities.
Common bearing fault classif and struggle to detect issues like lubricant
deficiency. In contrast, IRT overcomes these
limitations with its rapid, non-destructive
capabilities.
Common bearing fault classification
algorithms include machine learning (M deficiency. In contrast, IRT overcomes these

limitations with its rapid, non-destructive

capabilities.

Common bearing fault classification

algorithms include machine learning (ML)

methods such as support vector machin Imitations with its rapid, non-destructive
capabilities.
Common bearing fault classification
algorithms include machine learning (ML)
methods such as support vector machines
(SVM), k-nearest neighbors, and artificial
neura capabilities.
Common bearing fault classification
algorithms include machine learning (ML)
methods such as support vector machines
(SVM), k-nearest neighbors, and artificial
neural networks (ANN) [4]. However, ML
often req Common bearing fault classification
algorithms include machine learning (ML)
methods such as support vector machines
(SVM), k-nearest neighbors, and artificial
neural networks (ANN) [4]. However, ML
often requires extensiv algorithms include machine learning (ML)
methods such as support vector machines
(SVM), k-nearest neighbors, and artificial
neural networks (ANN) [4]. However, ML
often requires extensive feature extraction,
leading to sub methods such as support vector machines
(SVM), k-nearest neighbors, and artificial
neural networks (ANN) [4]. However, ML
often requires extensive feature extraction,
leading to subpar classification results. Deep
convolut (SVM), k-nearest neighbors, and artificial
neural networks (ANN) [4]. However, ML
often requires extensive feature extraction,
leading to subpar classification results. Deep
convolutional networks (CNN) can
automatically e neural networks (ANN) [4]. However, ML
often requires extensive feature extraction,
leading to subpar classification results. Deep
convolutional networks (CNN) can
automatically extract features from raw data,
eliminating often requires extensive feature extraction,
leading to subpar classification results. Deep
convolutional networks (CNN) can
automatically extract features from raw data,
eliminating the need for manual intervention.
Previ leading to subpar classification results. Deep
convolutional networks (CNN) can
automatically extract features from raw data,
eliminating the need for manual intervention.
Previous studies have applied CNNs to thermal
imag convolutional networks (CNN) can
automatically extract features from raw data,
eliminating the need for manual intervention.
Previous studies have applied CNNs to thermal
imaging for bearing fault detection, yet issues
lik automatically extract teatures from raw data,
eliminating the need for manual intervention.
Previous studies have applied CNNs to thermal
imaging for bearing fault detection, yet issues
like slow diagnostic speeds and low

eliminating the need for manual intervention.
Previous studies have applied CNNs to thermal
imaging for bearing fault detection, yet issues
like slow diagnostic speeds and low accuracy
persist. Recent advancements have aim

robustness.

Industry Science and Engineering Vol. 1 No. 7,
for various faulty bearings, showcasing strong
robustness.
2. Friction Torque Test Bench and Infrared
Thermal Imaging
The purpose of this study is to diagnose
bearing torque **Industry Science and Engineering Vol. 1 No. 7, 2024**

for various faulty bearings, showcasing strong

for various faulty bearings, showcasing strong

the purpose of this study is to diagnose

the purpose of this study is **Computer Science and Engineering Vol. 1 No. 7, 2024**

for various faulty bearings, showcasing strong

for various faulty bearings, showcasing strong
 $\begin{array}{ccc}\n\text{2. Friction Torque Test Bench and Infrared} & \text{in this research feature}\\
\text{Thermal Imaging} & \text{designed primarily} & \text{designed primarily}\\
\text{The purpose of this study is to diagnose$ **Example 18 To the Context of Context** Contention in the that may be the that may be the that may be the that may be the that means of the simulating the purpose of this study is to diagnose that may designed primarily fo **Computer Science and Engineering Vol. 1 No. 7, 2024**

for various faulty bearings, showcasing strong

robustness.

2. Friction Torque Test Bench and Infrared

in this research features

designed primaril maging

The purpo **Example 11 Industry Science and Engineering Vol. 1 No. 7, 2024**

for various faulty bearings, showcasing strong

robustness.

2. Friction Torque Test Bench and Infrared

Thermal Imaging

2. Friction Torque Test Bench and Industry Science and Engineering Vol. 1 No. 7, 2024

for various faulty bearings, showcasing strong

robustness.

2. Friction Torque Test Bench and Infrared

2. Triction Torque Test Bench and Infrared

2. Triction Torque f Industry Science and Engineering Vol. 1 No. 7, 2024

for various faulty bearings, showcasing strong

Experiments conducted o

colustness.

2. Friction Torque Test Bench and Infrared

1. The purpose of this study is to diag Experiments controlling to the total distance the magnitude of the magnitude of the test bearing to the test bearing to the test bearing to the test bearing to the purpose of this study is to diagnose the designed primaril Friend Towards and the measurement sconducted

2. Friction Torque Test Bench and Infrared

2. Friction Torque Test Bench and Infrared

2. The purpose of this study is to diagnose

2. Friction Torque Test Bench and Infrared robustness.

2. Friction Torque Test Bench and Infrared

Thermal Imaging

The purpose of this study is to diagnose

the purpose of this study is to diagnose

the purpose of this study is to diagnose

the purpose of this st **2. Friction Torque Test Bench and Infrared** collect relevant data.

Thermal Imaging

The purpose of this study is to diagnose friction torque, aver-

bearing torque faults using a friction torque starting friction torque 2. Friction Torque Test Bench and Infrared

The purpose of this study is to diagnose

bearing torque faults using a friction torque starting friction torque

test bench, simulating various faults that may

omponents: a mec The purpose of this study is to diagnose

bearing torestigned primarily the purpose of this study is to diagnose

test bench, simulating various faults that may

components: a mechanical device includes

occur during actu The purpose of this study is to diagnose triction torque, average the bench, simulating various faults using a friction torque starting friction torque. It costs bench, simulating various faults that may concents: a mechan bearing torque faults using a friction torque starting friction torque. It
est bench, simulating various faults that may
occur during actual bearing operation. This
approach allows for real-time monitoring and a control ac test bench, simulating various faults that may

occur during actual bearing operation. This and a contro

approach allows for real-time monitoring and mechanical devi

measurement to detect potential issues [7]. an adjustm

For various faulty bearings, showcasing strong
for various faulty bearings, showcasing strong
robustness.
2. Friction Torque Test Bench and Infrared
2. Friction Torque Test Bench and Infrared in this research feature
 2. Friction Torque Test Bench and Infrared
 2. Friction Torque Test Bench and Inf Experiments conducted on the bearing test
Experiments conducted on the bearing test
bench involve various high-speed bearings to
collect relevant data. The test bench employed
in this research features a patented bracket
d Experiments conducted on the bearing test
Experiments conducted on the bearing test
bench involve various high-speed bearings to
collect relevant data. The test bench employed
in this research features a patented bracket
d **Condemic Education**
Experiments conducted on the bearing test
bench involve various high-speed bearings to
collect relevant data. The test bench employed
in this research features a patented bracket
designed primarily for Experiments conducted on the bearing test
Experiments conducted on the bearing test
bench involve various high-speed bearings to
collect relevant data. The test bench employed
in this research features a patented bracket
d Experiments conducted on the bearing test
Experiments conducted on the bearing test
bench involve various high-speed bearings to
collect relevant data. The test bench employed
in this research features a patented bracket
d **follogies and the Control Components: a mecha Subsemier Consisted Friedmin Consistence**
 Experiments conducted on the bearing test

bench involve various high-speed bearings to

collect relevant data. The test bench employed

in this research features a patented br **Consumer Control Publishing House**
Experiments conducted on the bearing test
bench involve various high-speed bearings to
collect relevant data. The test bench employed
in this research features a patented bracket
designe **A cademic Education**
 Experiments conducted on the bearing test

bench involve various high-speed bearings to

collect relevant data. The test bench employed

in this research features a patented bracket

designed prima **Experiments** conducted on the bearing test
bench involve various high-speed bearings to
collect relevant data. The test bench employed
in this research features a patented bracket
designed primarily for measuring bearing
 Experiments conducted on the bearing House
Experiments conducted on the bearing test
bench involve various high-speed bearings to
collect relevant data. The test bench employed
in this research features a patented bracke Experiments conducted on the bearing test
bench involve various high-speed bearings to
collect relevant data. The test bench employed
in this research features a patented bracket
designed primarily for measuring bearing
f Experiments conducted on the bearing test
bench involve various high-speed bearings to
collect relevant data. The test bench employed
in this research features a patented bracket
designed primarily for measuring bearing
f Experiments conducted on the bearing test
bench involve various high-speed bearings to
collect relevant data. The test bench employed
in this research features a patented bracket
designed primarily for measuring bearing
f bench involve various high-speed bearings to
collect relevant data. The test bench employed
in this research features a patented bracket
designed primarily for measuring bearing
friction torque, average friction torque, an collect relevant data. The test bench employed
in this research features a patented bracket
designed primarily for measuring bearing
friction torque, average friction torque, and
starting friction torque. It consists of tw In this research teatures a patented bracket designed primarily for measuring bearing friction torque, average friction torque, and starting friction torque. It consists of two main components: a mechanical execution devi designed primarily for measuring bearing
friction torque, average friction torque, and
starting friction torque. It consists of two main
components: a mechanical execution device
and a control acquisition system. The
mecha friction torque, average friction torque, and
starting friction torque. It consists of two main
components: a mechanical execution device
and a control acquisition system. The
mechanical device includes a support platform, starting friction torque. It consists of two main
components: a mechanical execution device
and a control acquisition system. The
mechanical device includes a support platform,
an adjustment mechanism, a replaceable
clampi

Diagnosis

Figure 1. Experimental Device for Infrared Thermal Imaging Acquisition

This study utilized SKF-manufactured bearings, parameter, varies based on s

with detailed specifications provided in Table 1. the housing material, a Figure 1. Experimental Device for Infrared Thermal Imaging Acquisition in

Diagnosis

This study utilized SKF-manufactured bearings,

with detailed specifications provided in Table 1. the housing material, as well as

A to Figure 1. Experimental Device for Infrared Thermal Imaging Acquisitio

This study utilized SKF-manufactured bearings, parameter, varies based on

with detailed specifications provided in Table 1. the housing material, as Figure 1. Experimental Device for Infrared Thermal Imaging Acquisition in Bias and the transformation of the cross of the cross of the cross of A total of 750 images were captured at three humidity, and temperature differ Figure 1. Experimental Device for Infrared Thermal Imaging Acquaintations This study utilized SKF-manufactured bearings, parameter, varies based with detailed specifications provided in Table 1. the housing material A tota Figure 1. Experimental Device for Infrared Thermal Imaging Acquisition in B

Diagnosis

This study utilized SKF-manufactured bearings, parameter, varies based on surfa

with detailed specifications provided in Table 1.

A Figure 1. Experimental Device for Infrared Thermal Imaging Acquisitio
This study utilized SKF-manufactured bearings,
This study utilized SKF-manufactured bearings, parameter, varies based with detailed specifications prov **Dia**

This study utilized SKF-manufactured bearings,

with detailed specifications provided in Table 1.

A total of 750 images were captured at three

different speeds: 300 rpm, 600 rpm, and 900

rpm, resulting in 11,250 This study utilized SKF-manutactured bearings, parameter, varies based of the distinction of 750 images were captured at three humidity, and temperate at different speeds: 300 rpm, 600 rpm, and 900 experiment, the distanc with detailed specifications provided in Table 1. the housing material, as well a
A total of 750 images were captured at three humidity, and temperature
different speeds: 300 rpm, 600 rpm, and 900 experiment, the distance A total of 750 images were captured at three humidity, and temperat different speeds: 300 rpm, 600 rpm, and 900 experiment, the distance images. The imager to the target object has diastaset was divided into three parts,

For the distance for the distance from the thermal imager
triangle and the mail imager
sisted the housing material, as well as distance, relative
humidity, and temperature scale. In this
experiment, the distance from the t Final Imaging Acquisition in Bearing Fault

Infinited themal imager

Final Imaging Acquisition in Bearing Fault

sis

parameter, varies based on surface properties of

the housing material, as well as distance, relative

h THE TREAT IS IN THE TREAT IS IN THE TREAT IS IN THE ISLAM IS

Infrared thermal imager

sis

parameter, varies based on surface properties of

the housing material, as well as distance, relative

humidity, and temperature s The the test stand to capture the from the silulation of the housing material, as well as distance, relative humidity, and temperature scale. In this experiment, the di Infared themal imager

Infared themal imager

Frankline Constant Constant Constant Constant Constant

Frankline State and State and State and State and State and State Before

the move of the distance from the thermal

ima

Figure 2 displays and the figure 2 displays and the figure of the minimal Imager
parameter, varies based on surface properties of
the housing material, as well as distance, relative
humidity, and temperature scale. In this Infiared themal imager

Infiared themal imager

sis

sis

sis

sis

sis

sis

signaremeter, varies based on surface properties of

the housing material, as well as distance, relative

humidity, and temperature scale. In th Imaging Acquisition in Bearing Fault

sis

sis

parameter, varies based on surface properties of

the housing material, as well as distance, relative

humidity, and temperature scale. In this

experiment, the distance from **Example 12**
 Example 12 sis
parameter, varies based on surface properties of
the housing material, as well as distance, relative
humidity, and temperature scale. In this
experiment, the distance from the thermal
imager to the target object was parameter, varies based on surface properties of
the housing material, as well as distance, relative
humidity, and temperature scale. In this
experiment, the distance from the thermal
imager to the target object was set at the housing material, as well as distance, relative
humidity, and temperature scale. In this
experiment, the distance from the thermal
imager to the target object was set at 1.5 meters
to ensure high-quality image resoluti humdity, and temperature scale. In this experiment, the distance from the thermal imager to the target object was set at 1.5 meters to ensure high-quality image resolution [11]. The test bench was initially operated for tw

Bearing

and Solution Priorius Selection (a) Inner Ring Loss (b) Outer Ring Loss (c) Lack of Lubrication (d) Inner Lack of Lubrication (e) Marble Defect (f) Loss

isolate high and low isolate high and low isolate high and low isola The Contrast, the CNN-based dignorisation of the main experiment and the distribution of the CNN-based method for the CNN-based method requires are contrasted in the CNN-based method requires are previously and solution of (d)

Figure 3 Raw Thermal Images of Bearings Captured at 600

(a) Inner Ring Loss (b) Outer Ring Loss (c) Lack of Lubrication (d) Inner a

Lack of Lubrication (e) Marble Defect (f) Loss

siolate high and low frequency

S. Figure 3 Raw Thermal Images of Bearings Captured at 600rpm

Figure 3 Raw Thermal Images of Bearings Captured at 600rpm

Lack of Lubrication (e) Marble Defect (f) Loss

isolate high and low frequence

3. Diagnosis of Faults Figure 3 Raw Thermal Images of Bearings Captured at

Lack of Lubrication (e) Marble Defect (f) Loss

3. Diagnosis of Faults in Friction Torque high-pass and low-pa

3. Diagnosis of Faults in Friction Torque high-pass and (a) Inner Ring Loss (b) Outer Ring Loss (c) Lack of Lubrication (d) Inner a

Lack of Lubrication (e) Marble Defect (f) Loss

isolate high and low-pass

Bearing

The method for diagnosing bearing faults using

The method f Lack of Lubrication (e) M

3. Diagnosis of Faults in Friction Torque

Bearing

The method for diagnosing bearing faults using

CNN and SVM is outlined as follows. Initially,

the SVM approach involves a feature extraction
 Example 18
The method for diagnosing bearing faults using
CNN and SVM is outlined as follows. Initially,
the SVM approach involves a feature extraction
and selection process specific to torque bearings.
In contrast, the The method for diagnosing bearing faults using

CNN and SVM is outlined as follows. Initially, high-frequency detail coe

the SVM approach involves a feature extraction

and selection process specific to torque bearings.
 CNN and SVM is outlined as follows. Initially, high-frequency detail coeffic
the SVM approach involves a feature extraction
low-frequency detail coeffic
and selection process specific to torque bearings. frequency approxi

preprocessing and conversion of thermal images

for input into the CNN. Figure 4 illustrates a

concentrated in the

schematic of the proposed diagnostic framework and LH) and low-

that integrates both CNN and SVM for be for input into the CNN. Figure 4 illustrates a concentrated in the detail coef

schematic of the proposed diagnostic framework and LH) and low-frequency c

that integrates both CNN and SVM for bearing in the approximation

3. Dragnosis of Faults in Friction Torque ingn-pass and tow-pass interest

The method for diagnosing bearing faults using
 Δ as a result, four sub-band image

The method for diagnosing bearing faults using
 Δ as a the SVM approach involves a feature extraction
and selection process specific to torque bearings.

In contrast, the CNN-based method requires Each sub-band image

preprocessing and conversion of thermal images characteris and selection process specific to torque bearings. Irequency approximation coe

In contrast, the CNN-based method requires Each sub-band image

preprocessing and conversion of thermal images

for input into the CNN. Figur In contrast, the CNN-based method requires Each sub-band image
preprocessing and conversion of thermal images characteristics, with high-free
for input into the CNN. Figure 4 illustrates a concentrated in the detail coeff France Controllery

Assemble Defect (f) Loss

Signals Captured at 600rpm

(f)

The Defect (f) Loss

isolate high and low frequency components,

high-pass and low-pass filters are applied to

cach data line, followed by 2x **Example 3**
 Example 3
 Example 3
 Example 2
 Example Defect (f) Loss
 Starble Example 12
 Example 3
 Example 3
 Example Defect (f) Loss
 Starble Defect (f) Example 18 Controlled ACCO
(f)
Bearings Captured at 600rpm
f Lubrication (d) Inner and Outer Ring Loss,
farble Defect (f) Loss
isolate high and low frequency components,
high-pass and low-pass filters are applie Example 1 (f)
 Example 2 (f)
 Example Defect (f) Loss
 Example 1 and low-pass filters are applied to

each (f)
 Bearings Captured at 600rpm
 of Lubrication (d) Inner and Outer Ring Loss,
 Iarble Defect (f) Loss
 isolate high and low frequency components,

high-pass and low-pass filters are applied to

each data line, f Bearings Captured at 600rpm
of Lubrication (d) Inner and Outer Ring Loss,
farble Defect (f) Loss
isolate high and low frequency components,
high-pass and low-pass filters are applied to
each data line, followed by 2x down **Bearings Captured at 600rpm**

of Lubrication (d) Inner and Outer Ring Loss,
 Iarble Defect (f) Loss

isolate high and low-frequency components,

high-pass and low-pass filters are applied to

each data line, followed b In Furthermology and Duter Ring Loss,
 Starble Defect (f) Loss

isolate high and low frequency components,

high-pass and low-pass filters are applied to

each data line, followed by 2x downsampling.

As a result, four **Iarble Defect (f) Loss**
isolate high and low frequency components,
high-pass and low-pass filters are applied to
each data line, followed by 2x downsampling.
As a result, four sub-band images are generated:
high-frequenc isolate high and low frequency components,
high-pass and low-pass filters are applied to
each data line, followed by 2x downsampling.
As a result, four sub-band images are generated:
high-frequency detail coefficients (HH high-pass and low-pass litters are applied to
each data line, followed by 2x downsampling.
As a result, four sub-band images are generated:
high-frequency detail coefficient (LH, HL),
low-frequency approximation coefficie Bearings Captured at 600rpm
 Shower and Outer Ring Loss,
 Shower and Outer Ring Loss,
 Shower and low frequency components,
 high-pass and low-pass filters are applied to

each data line, followed by 2x downsampli As a result, four sub-band mages are generated.

high-frequency detail coefficients (HH, HL),

low-frequency approximation coefficient (LL) [14].

Each sub-band mage exhibits unique

characteristics, with high-frequency c mgn-inequency detail coefficient (LH), and low-
frequency approximation coefficient (LL) [14].
Each sub-band image exhibits unique
characteristics, with high-frequency components
concentrated in the detail coefficients (H Frequency detail coefficient (L1), and low-
frequency approximation coefficient (LL) [14].
Each sub-band image exhibits unique
characteristics, with high-frequency components
concentrated in the detail coefficients (HH, H **Example 10**
 Explored at 600rpm

(f)
 Captured band band in the capture of the cap Continued at 600rpm

(f)

Captured at 600rpm

(f)

Laptured at 600rpm

tion (d) Inner and Outer Ring Loss,

eet (f) Loss

gand low-pass filters are applied to

line, followed by 2x downsampling.

t, four sub-band images a bub-band image exhibits unique
existics, with high-frequency components
ristics, with high-frequency components
ated in the detail coefficients (HH, HL,
and low-frequency components found
pproximation coefficient (LL). Fu ated in the detail coefficients (HH, HL,
and low-frequency components found
pproximation coefficient (LL). Further
sition of the LL band provides an even
tailed sub-band image, as illustrated in
. Here $k = 0$ specifies th *x* **Captured at 600rpm**
cation (d) Inner and Outer Ring Loss,
befect (1) Loss
high and low frequency components,
signal low-pass filters are applied to
ta line, followed by 2x downsampling.
quency detail coeff befect (f) Loss

high and low frequency components,

high and low-pass filters are applied to

ta line, followed by 2x downsampling.

ult, four sub-band images are generated:

quency detail coefficients (HH, HL),

quenc (f)

(f)

and **600rpm**

(f) Inner and Outer Ring Loss,

Loss

d low frequency components,

cow-pass filters are applied to

followed by 2x downsampling.

auth-band images are generated:

detail coefficients (HH, HL),

tet (f)
 and 600rpm
 Inner and Outer Ring Loss,

oss

low frequency components,

v-pass filters are applied to

lowed by 2x downsampling.

lo-band images are generated:

tail coefficients (HH, HL),

ail coefficients (HH, For a coorpin
a) Inner and Outer Ring Loss,
Loss
d low frequency components,
cov-pass filters are applied to
followed by 2x downsampling.
sub-band images are generated:
detail coefficients (HH, HL),
teial coefficients (HH Inner and Outer Ring Loss,

oss

low frequency components,

low-band ingles are applied to

low-band images are generated:

the band images are generated:

tail coefficient (LH), and low-

mation coefficient (LL) [14].

i

$$
t_{01}(a,b) = \left[L_x * [L_y * I_0]\right] \downarrow_2 (a,b)
$$

:\n
$$
t_{31}(a,b) = \left[H_x * [H_y * I_0]\right] \downarrow_2 (a,b)
$$

Industry Science and Engineering Vol. 1 No. 7, 2024

Bearings

	argument	Instructions
	Model number	SKF 7207CD
	Contact Angle	10.583°
	Pitch diameter	38.376 mm
	Number of balls/rows	13
	Line number	$\mathcal{D}_{\mathcal{L}}$
	Sphere diameter	7.5 mm
" c 15.8		

Industry Science and Engineering Vol. 1 No. 7, 2024

Where (*) and (\downarrow) represent the convolution and

downsampling processes, respectively [15].

Here (Lx, Ly) and (Hx, Hy) are low-pass and

high-pass filters.

t fi **Industry Science and Engineering Vol. 1 No. 7, 2024**

Where (*) and (1) represent the convolution and expressed as.

downsampling processes, respectively [15].

Here (Lx, Ly) and (Hx, Hy) are low-pass and $t_{low}(a,b) = [L_y * I_o$ *Industry Science and Engineering Vol. 1 No. 7, 2024*

Where (*) and (\downarrow) represent the convolution and

downsampling processes, respectively [15].

Here (Lx, Ly) and (Hx, Hy) are low-pass and

high-pass filters.
 t_{0 *Industry Science and Engineering Vol. 1 No. 7,*
Where (*) and (\downarrow) represent the convolution and
downsampling processes, respectively [15].
Here (Lx, Ly) and (Hx, Hy) are low-pass and
high-pass filters.
 t_{01} filter

$$
\begin{array}{ll}\n\text{4} & \text{Alcademic Education} \\
\text{expressed as.} \\
Y_{low}(a,b) = \left[L_y * I_o\right] \downarrow_2 (a,b) = \sum_{n=2}^1 I_o(a,n) L_y(a,2b-n) \\
t_{01}(a,b) = \left[L_x * \left[L_y * I_o\right] \downarrow_2\right] \downarrow_2 (a,b) = \sum_{n=2}^1 Y_{low}(n,b) L_x(2a-n,b)\n\end{array} \tag{2}
$$
\nFeature selection using PCA

\nSVM

\nFind the following equation:

Proposed

Figure 5. Two-dimensional Discrete Wavelet Transform

Figure 5. Two-dimensional Discrete Wavelet Transform

Transform further refine these features

CBAM CNN

CONVOLUTION PROPERTIES (CNNS) are intigrating overfitting.

CON Figure 5. Two-dimensional Discrete Wavelet Transform

Transform further refine these featured

CBAM CNN

CONVIDIONAL TRANS (CNNS) are the extracted features

multi-layer feedforward architectures that utilize the extracted Figure 5. Two-dimensional Discrete Wavelet Transport Figure 5. Two-dimensional Discrete Wavelet Transport CBAM CNN
and fully convolutional neural networks (CNNs) are After several rounds
multi-layer feedforward architectur Figure 5. Two-dimensional Discrete Wavelet Transfurt

3.2 Friction Torque Fault Diagnosis of VGG-

CBAM CNN

Convolutional neural networks (CNNs) are mitigating overfitting

Convolutional neural networks (CNNs) are After s Figure 5. Two-dimensional Discrete Wavelet Transform

3.2 Friction Torque Fault Diagnosis of VGG-

CBAM CNN

Convolutional neural networks (CNNs) are After several rounds of convolutional neural networks (CNNs) are After s Figure 5. Two-dimensional Discrete Wavelet Transform

further refine these feature

CBAM CNN

Convolutional neural networks (CNNs) are mitigating overfitting.

Convolutional neural networks (CNNs) are After several rounds

Level-2

Level-2

DWT

DWT

HL of level 2

HL of level

dHere fully

dimensions, thereby accelerating processing and

mitigating overfitting.

After several round Example 1

Level-2

DWT

DWT

Level-2

Level-2

Level-2

Hu of level-2

Hu of level-2

Hu of level-2

Thu of level-2

Thu of level-2

Thus for classification tasks and

dimensions, there is connected features are fed into For the structure allows CNNs to employ a
structure and the velocity of the structure functions of the structure of the extracted features are fed into the fully
the extracted features are fed into the fully
the extracted screte Wavelet Transform
further refine these features by reducing data
dimensions, thereby accelerating processing and
mitigating overfitting.
After several rounds of convolution and pooling,
the extracted features are fe screte Wavelet Transform
further refine these features by reducing data
dimensions, thereby accelerating processing and
mitigating overfitting.
After several rounds of convolution and pooling,
the extracted features are fe **Exercit Wavelet Transform**

further refine these features by reducing data

dimensions, thereby accelerating processing and

mitigating overfitting.

After several rounds of convolution and pooling,

the extracted feature **Example 18 Section**
 Example 18 Section
 Example 18 Sections
 Example 18 Secti Example 18 Example 18 Example 18 Example 18 Example 18 After several rounds of convolution and pooling, the extracted features are fed into the fully connected layers for classification tasks. This structure allows CNNs

Andemic Education
 Andemic Education
 Andemic Education
 Andemic Education
 Andemic Validation sets in a 7:3 ratio, ensuring that

each category in the training set contains 750 dataset is processed using

images **Example 19**
 Example 20
 Example 20
 Example 20
 Example 20
 EXEL According Process Contains 750
 EXEL According 20
 EXEL According 20
 EXEL According 20
 EXEL ACCOL
 EXEL ACCOL
 EXEL ACCOL
 EXEL AC Publishing House
 Configured Education
 Configured Education
 Configured Education
 Configured Education Strategory in the training set contains 750 dataset is proce

images, while the validation set comprises th

Academic Education
 Convolution Fundishing House
 Convolution
 Co Accidentic Education
 Accidentic Education
 Accidentic Education
 Consequent
 Conseque Probabilishing House *Industry Science and Engineering*
and validation sets in a 7:3 ratio, ensuring that applied to the infrared thermal
each category in the training set contains 750 dataset is processed using
image **CONTIGENT CONSTRANGED THEORY CONTINUIST THEORY OF PUBLISHING PUBLISHING** PUBLISHING and validation sets in a 7:3 ratio, ensuring that applied to the infrared therm each category in the training set contains 750 dataset i **CONTINUMERT ACCORDITED ACCORDITED ACCORDITED ACCORDITED ACCORDITED AND INTERENT ACCORDITED AND ACCORDITED AND ACCORDITED Accelering Education**
 Publishing House Industry Science and Engineering

and validation sets in a 7:3 ratio, ensuring that applied to the infrared therm

each category in the training set contains 750 dataset is proce **The Publishing House** Industry Science and Engineering V

and validation sets in a 7:3 ratio, ensuring that applied to the infrared thermal

each category in the training set contains 750 dataset is processed using t

im External validation sets in a 7:3 ratio, ensuring that
each category in the training set contains 750
images, while the validation set comprises the
remaining images for each label [16].
3.2.1 Convolution Layer in Deep Le e validation set comprises the
for each label [16]. This
Layer in Deep Learning Models vanisl
ayer consists of an array of 2D netword
ce multiple feature maps. The
non-liorks in conjunction with the Softm
to combine the r **Example 13** and 1:3 ratio, ensuring that

an the training set contains 750

the validation set comprises the

as for each label [16]. The asset of an array of 2D

layer consists of an array of 2D

ince multiple feature m remaining images for each label [16]. This normalization step mitig
3.2.1 Convolution Layer in Deep Learning Models
The convolution layer consists of an array of 2D
retworks and enhances their
filters that produce multipl 3.2.1 Convolution Layer in Deep Learning Models

The convolution layer consists of an array of 2D

retworks and enhances their

filters that produce multiple feature maps. The

non-linear relationships. A

pooling layer w The convolution layer consists of an array of 2D networks and enhances the filters that produce multiple feature maps. The non-linear relationships.
pooling layer works in conjunction with the Softmax activation function

$$
B(e,f) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} x(m,n)h(e-m,f-n)
$$
 (3)

filters that produce multiple feature maps. The
pooling layer works in conjunction with the
convolution fiveloutions while reducing the spatial dispersion, improv
convolutions while reducing the spatial dispersion, improv pooling layer works in conjunction with the Softmax activation fi
convolution layer to combine the results of local dispersion, improv
convolutions while reducing the spatial dispersion, improv
denotions of the infrared t convolution layer to combine the results of local

dispersion, improving

convolutions while reducing the spatial

dimensions of the infrared thermal images [17].

The 2D convolution operation can be
 $B(e,f) = \sum_{m=0}^{\infty} \sum$ convolutions while reducing the spatial efficiency of the bea
dimensions of the infrared thermal images [17].
The 2D convolution operation can be $u =$
represented as:
 $B(e,f) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} x(m,n)h(e-m,f-n)$ (3) $\sigma^2 = \frac$ dimensions of the infrared thermal images [17].

The 2D convolution operation can be

represented as:
 $B(e,f) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} x(m,n)h(e-m, f-n)$ (3) $\sigma^2 = \frac{1}{N}$

In the convolution process, h denotes the

impulse resp The 2D convolution operation can be $u = \frac{1}{N} \sum_{i=1}^{N} x_i$
represented as:
 $B(e,f) = \sum_{m=0}^{\infty} \sum_{i=0}^{\infty} x(m,n)h(e-m,f-n)$ (3) $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - u_i)$
In the convolution process, h denotes the impulse response, while m represented as:
 $B(e,f) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} x(m,n)h(e-m,f-n)$ (3) $\sigma^2 = \frac{1}{N} \sum_{i=1}^N {n \choose i}$

In the convolution process, h denotes the

impulse response, while m and n represent the

pixel values of the input infrared th

 $B(e,f) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} x(m,n)h(e-m,f-n)$ (3) $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i$

In the convolution process, h denotes the

impulse response, while m and n represent the

pixel values of the input infrared thermal (IRT)

image. $B(e, f) = \sum_{m=0}^{\infty} x(m,n)h(e-m, f-n)$ (3) $\sigma = \frac{1}{N} \sum_{i=1}^{\infty} (n, n)h(e-m, f-n)$ (3) $\sigma = \frac{1}{N} \sum_{i=1}^{\infty} (n, n)h(e-m, f-n)$

In the convolution process, h denotes the

impulse response, while m and n represent the

pixel values of In the convolution process, h denotes the

impulse response, while m and n represent the

pixel values of the input infrared thermal (IRT)

image. The output pixel values after convolution

are denoted as e and f. The con In the convolution process, h denotes the

impulse response, while m and n represent the

pixel values of the input infrared thermal (IRT)

image. The output pixel values after convolution

are denoted as e and f. The con mpulse response, while m and n represent the

pixel values of the input infrared thermal (IRT)

image. The output pixel values after convolution

are denoted as e and f. The convolution Where μ denotes the av

operatio pixel values of the input infrared thermal (IR1)

image. The output pixel values after convolution

are denoted as e and f. The convolution

operation utilizes a sliding window to generate

the output for the subsequent l mage. The output pixel values after convolution
operation das e and f. The convolution
operation utilizes a sliding window to generate
represents the input properties,
the output for the subsequent layer [18]. total numbe are denoted as e and f. The convolution Where μ denotes the ave
operation utilizes a sliding window to generate represents the input prop-
the output for the subsequent layer [18]. The activation function in the convol operation utilizes a sliding window to generate

represents the input prop

the output for the subsequent layer [18].

The activation function in the convolutional

stands for the normalized

layer plays a crucial role in the output for the subsequent layer [18]. total number of samples, or s

The activation function in the convolutional stands for the normalized samp

layer plays a crucial role in transforming the output after scaling ki, The activation function in the convolutional

stands for the normalized samp

convolved IRT data by introducing nonlinear

transformations. This enhances feature

transformations. This enhances feature

transformations. T layer plays a crucial role in transforming the

convolved IRT data by introducing nonlinear
 γ and β are the scaling pair

transformations. This enhances feature

representation, promotes sparsity, and addresses

th convolved IRT data by introducing nonlinear γ and β are the scaling parar
transformation, promotes pararity, and addresses
the gradient vanishing problem, thereby Where x'_i indicates input an
improving the convolu transformations. This enhances teature $Z_i^t = f(x_i^t) = \max$
representation, promotes sparsity, and addresses
the gradient vanishing problem, thereby Where x_i^t indicates input and Z
improving the convolutional neural networ representation, promotes sparsity, and addresses
the gradient vanishing problem, thereby
improving the convolutional neural network's
performance. Common activation functions between two consecutive com
include ReLU, Leak the gradient vanishing problem, thereby Where x_i indicates input a
improving the convolutional neural network's The pooling layer is
performance. Common activation functions functions by reducing the
include ReLU, Leaky mproving the convolutional neural network's The pooling layer is ty
performance. Common activation functions between two consecutive con
include ReLU, Sigmoid, Tanh, functions by reducing the si
and Softmax. While ReLU is performance. Common activation functions

include ReLU, Eacky ReLU, Sigmoid, Tanh,

and Softmax. While ReLU is straightforward, it

can lead to issues such as neuron death, limiting the size

can lead to issues such as neu multi-class class class contracts and produce the and Softmax. While ReLU is straightforward, it map while maintaining a can lead to issues such as neuron death, limiting the interemaps [19]. Pooling its effectiveness in e and Softmax. While ReLU is straightforward, it

can lead to issues such as neuron death, limiting

its effectiveness in extracting bearing features.

In the maximum pooling

Leaky ReLU helps alleviate neuron death by

intr can lead to issues such as neuron death, limiting

its effectiveness in extracting bearing features.

Leaky ReLU helps alleviate neuron death by

introducing a small slope, but selecting the

appropriate slope can be chall Leaky ReLU helps alleviate neuron death by

introducing a small slope, but selecting the

interducing a small slope, but selecting the

interducing a mapropriate slope can be challenging. Sigmoid

cluster of binary

clust introducing a small slope, but selecting the
appropriate slope can be challenging. Sigmoid
functions are primarily suited for binary
classification, making them less effective for
multi-class scenarios like faulty bearings introducing a small slope, but selecting the

appropriate slope can be challenging. Sigmoid

contyput, average pooling con

functions are primarily suited for binary

classification, making them less effective for within appropriate slope can be challenging. Sigmoid output, average pooling contunctions are primarily suited for binary the values, and sum poolin explores of the values, and sum poolin multi-class scenarios like faulty bearin functions are primarily suited for binary
classification, making them less effective for within the region.
multi-class scenarios like faulty beraings. The and Martentanon Manh function also suffers from gradient Feature chassification, making them less effective for

multi-class scenarios like faulty bearings. The 3.2.3 Spatial Attention Mod

Tanh function also suffers from gradient Feature Representation

vanishing, risking the loss of

Industry Science and Engineering Vol. 1 No. 7, 2024

Example 19
 Configurer Contains Properties Contains Properties (Publishing House
 Configurer 1998

and validation sets in a 7:3 ratio, ensuring that applied to the infrared thermal

each category in the training set **Convolution Convolution**
 Convolution
 Academic Education

Industry Science and Engineering Vol. 1 No. 7, 2024

idation sets in a 7:3 ratio, ensuring that

applied to the infrared thermal imaging data, the

tegory in the training set contains 750 dataset is pr Academic Education
 Academic Education
 Academic Education
 Academic Education
 Academy in the training set contains 750 dataset is processed using the Rel. U linear

s, while the validation set comprises the acti mic Education

Industry Science and Engineering Vol. 1 No. 7, 2024

is ets in a 7:3 ratio, ensuring that

in the training set contains 750

in the training set contains 750

tataset is processed using the ReLU linear

the *try Science and Engineering Vol. 1 No. 7, 2024*
applied to the infrared thermal imaging data, the
dataset is processed using the ReLU linear
activation function, as represented in equation 6.
This normalization step mitig *try Science and Engineering Vol. 1 No. 7, 2024*
applied to the infrared thermal imaging data, the
dataset is processed using the ReLU linear
activation function, as represented in equation 6.
This normalization step mitig try Science and Engineering Vol. 1 No. 7, 2024
applied to the infrared thermal imaging data, the
dataset is processed using the ReLU linear
activation function, as represented in equation 6.
This normalization step mitigat try Science and Engineering Vol. 1 No. 7, 2024
applied to the infrared thermal imaging data, the
dataset is processed using the ReLU linear
activation function, as represented in equation 6.
This normalization step mitigat try Science and Engineering Vol. 1 No. 7, 2024
applied to the infrared thermal imaging data, the
dataset is processed using the ReLU linear
activation function, as represented in equation 6.
This normalization step mitigat try *Science and Engineering Vol. 1 No. 7, 2024*
applied to the infrared thermal imaging data, the
dataset is processed using the ReLU linear
activation function, as represented in equation 6.
This normalization step mitig *try Science and Engineering Vol. 1 No. 7, 2024*
applied to the infrared thermal imaging data, the
dataset is processed using the ReLU linear
activation function, as represented in equation 6.
This normalization step miti *try Science and Engineering Vol. 1 No. 7, 2024*
applied to the infrared thermal imaging data, the
dataset is processed using the ReLU linear
activation function, as represented in equation 6.
This normalization step miti try Science and Engineering Vol. 1 No. 7, 2024
applied to the infrared thermal imaging data, the
dataset is processed using the ReLU linear
activation function, as represented in equation 6.
This normalization step mitiga try Science and Engineering Vol. 1 No. 7, 2024
applied to the infrared thermal imaging data, the
dataset is processed using the ReLU linear
activation function, as represented in equation 6.
This normalization step mitiga Engineering *Vol. 1 No. 7, 2024*

Franced thermal imaging data, the

sssed using the ReLU linear

n, as represented in equation 6.

on step mitigates the gradient

ften encountered in deep neural

hances their ability to **eering Vol. 1 No. 7, 2024**
thermal imaging data, the
using the ReLU linear
represented in equation 6.
p mitigates the gradient
necountered in deep neural
s their ability to express
ips. Additionally, the
netion addresses ing the ReLU linear
presented in equation 6.
mitigates the gradient
buntered in deep neural
heir ability to express
i. Additionally, the
ion addresses gradient
the convergence
cault diagnosis model.
 $\sum_{i=1}^{N} x_i$ (4)
 \sum *x x n x* *****x d* **Engineering Vol. 1 No. 7, 2024**

infrared thermal imaging data, the

coessed using the ReLU linear

tion, as represented in equation 6.

step mitigates the gradient

often encountered in deep neural

enhances their a *Engineering Vol. 1 No. 7, 2024

frared thermal imaging data, the

essed using the ReLU linear

on, as represented in equation 6.

ion step mitigates the gradient

offern encountered in deep neural

nhances their abilit* **eering Vol. 1 No. 7, 2024**

thermal imaging data, the

using the ReLU linear

represented in equation 6.

p mitigates the gradient

nocountered in deep neural

s their ability to express

s their ability to express

the *Engineering Vol. 1 No. 7, 2024

frared thermal imaging data, the

frared thermal imaging data, the

sesed using the ReLU linear

on as represented in equation 6.

on step mitigates the gradient

frem encountered in dee* and Engineering Vol. 1 No. 7, 2024

the infrared thermal imaging data, the

processed using the ReLU linear

unction, as represented in equation 6.

ulization step mitigates the gradient

sisue often encountered in deep n

$$
u = \frac{1}{N} \sum_{i=1}^{N} x_i
$$
 (4)

$$
\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - u_i)^2
$$
 (5)

$$
k_i = \frac{x_i - u}{\sqrt{\sigma^2 + \varepsilon}}
$$
 (6)

$$
y_i = \gamma k_i + \beta \tag{7}
$$

Softmax activation function addresses gradient
dispersion, improving the convergence
efficiency of the bearing fault diagnosis model.
 $u = \frac{1}{N} \sum_{i=1}^{N} x_i$ (4)
 $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - u_i)^2$ (5)
 $k_i = \frac{x_i - u}{\sqrt{\sigma^2 + \varepsilon$ dispersion, improving the convergence

efficiency of the bearing fault diagnosis model.
 $u = \frac{1}{N} \sum_{i=1}^{N} x_i$ (4)
 $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - u_i)$ (5)
 $k_i = \frac{x_i - u}{\sqrt{\sigma^2 + \varepsilon}}$ (6)
 $y_i = \gamma k_i + \beta$ (7)

Where μ denotes efficiency of the bearing fault diagnosis model.
 $u = \frac{1}{N} \sum_{i=1}^{N} x_i$ (4)
 $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - u_i)$ (5)
 $k_i = \frac{x_i - u}{\sqrt{\sigma^2 + \varepsilon}}$ (6)
 $y_i = \gamma k_i + \beta$ (7)

Where μ denotes the average of the sample, xi

represe $u = \frac{1}{N} \sum_{i=1}^{N} x_i$ (4)
 $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - u_i)$ (5)
 $k_i = \frac{x_i - u}{\sqrt{\sigma^2 + \varepsilon}}$ (6)
 $y_i = \gamma k_i + \beta$ (7)

Where μ denotes the average of the sample, xi

represents the input properties, N indicates the

total n $u = \frac{1}{N} \sum_{i=1}^{N} x_i$ (4)
 $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - u_i)^2$ (5)
 $k_i = \frac{x_i - u}{\sqrt{\sigma^2 + \varepsilon}}$ (6)

Where μ denotes the average of the sample, xi

represents the input properties, N indicates the

total number of samples, $σ² = \frac{1}{N} \sum_{i=1}^{N} (x_i - u_i)^2$ (5)
 $k_i = \frac{x_i - u}{\sqrt{\sigma^2 + \varepsilon}}$ (6)
 $y_i = \gamma k_i + \beta$ (7)

Where μ denotes the average of the sample, xi

represents the input properties, N indicates the

total number of samples, σ is the *x*_{*i*} = $\frac{x_i - u}{\sqrt{\sigma^2 + \varepsilon}}$ (6)
 $y_i = \gamma k_i + \beta$ (7)
 μ denotes the average of the sample, xi

number of samples, σ is the variance, ki

for the normalized sample value, yi is the

after scaling ki, ε is a sma (6)

(7)

of the sample, xi

N indicates the

the variance, ki

e value, yi is the

all constant, and

rs.

0, x_t^l }
(8)

indicates output.

ally positioned

lution layers and

of each feature

that number of

$$
Z_t^l = f\left(x_t^l\right) = \max\left\{0, x_t^l\right\} \tag{8}
$$

Where x_t^i indicates input and Z_t^i indicates output. $k_i = \frac{x_i - u}{\sqrt{\sigma^2 + \varepsilon}}$ (6)
 $y_i = \gamma k_i + \beta$ (7)

Where μ denotes the average of the sample, xi

represents the input properties, N indicates the

total number of samples, σ is the variance, ki

stands for the normali $\sqrt{\sigma^2 + \varepsilon}$
 $y_i = \gamma k_i + \beta$ (7)

Where μ denotes the average of the sample, xi

represents the input properties, N indicates the

total number of samples, σ is the variance, ki

stands for the normalized sample val $y_i = \gamma k_i + \beta$ (7)
Where μ denotes the average of the sample, xi
represents the input properties, N indicates the
total number of samples, o is the variance, ki
stands for the normalized sample value, yi is the
output af Where μ denotes the average of the sample, xi
represents the input properties, N indicates the
total number of samples, σ is the variance, ki
stands for the normalized sample value, yi is the
output after scaling ki where μ denotes the average of the sample, xi
represents the input properties, N indicates the
total number of samples, σ is the variance, ki
stands for the normalized sample value, yi is the
output after scaling ki represents the imput properties, is minicates the
total number of samples, σ is the variance, ki
stands for the normalized sample value, yi is the
output after scaling ki, ε is a small constant, and
γ and β are the scali bustar humber of samples, o is the variance, ki
stands for the normalized sample value, yi is the
output after scaling ki, e is a small constant, and
γ and β are the scaling parameters.
 $Z'_i = f(x'_i) = \max\{0, x'_i\}$ (8)
Where stands for the normalized sample value, yi is the
output after scaling ki, ε is a small constant, and
 γ and β are the scaling parameters.
 $Z'_t = f(x'_t) = \max\{0, x'_t\}$ (8)
Where x'_t indicates input and Z'_t indicat output after scaling ki, ε is a sinant constant, and γ and β are the scaling parameters.
 $Z'_t = f(x'_t) = \max\{0, x'_t\}$ (8)

Where x'_t indicates input and Z'_t indicates output.

The pooling layer is typically positioned

b *T* and p are the scanng parameters.
 $Z'_t = f(x'_t) = \max\{0, x'_t\}$ (8)

Where x'_t indicates input and Z'_t indicates output.

The pooling layer is typically positioned

between two consecutive convolution layers and

functi $Z_t^i = f(x_t^i) = \max\{0, x_t^i\}$ (8)
Where x_t^i indicates input and Z_t^i indicates output.
The pooling layer is typically positioned
between two consecutive convolution layers and
functions by reducing the size of each feat Where x'_i indicates input and Z'_i indicates output.
The pooling layer is typically positioned
between two consecutive convolution layers and
functions by reducing the size of each feature
map while maintaining a const The pooling layer is typically positive
between two consecutive convolution layers
functions by reducing the size of each feature
map while maintaining a constant numbe
feature maps [19]. Pooling operations
include maximum The pooling layer is typically positioned
between two consecutive convolution layers and
functions by reducing the size of each feature
map while maintaining a constant number of
feature maps [19]. Pooling operations can
i between two consecutive convolution layers and
functions by reducing the size of each feature
map while maintaining a constant number of
feature maps [19]. Pooling operations can
include maximum pooling, average pooling, a functions by reducing the size of each feature
map while maintaining a constant number of
feature maps [19]. Pooling operations can
include maximum pooling, average pooling, and
sum pooling. Maximum pooling identifies the

multi-class scenarios like faulty bearings. The 3.2.3 Spatial Attention Modul

Tanh function also suffers from gradient Feature Representation

vanishing, risking the loss of important fault CBAM integrates spatial and c
 map while maintaining a constant number of
feature maps [19]. Pooling operations can
include maximum pooling, average pooling, and
sum pooling. Maximum pooling identifies the
highest value within the specified region as t feature maps [19]. Pooling operations can
include maximum pooling, average pooling, and
sum pooling. Maximum pooling identifies the
highest value within the specified region as the
output, average pooling computes the mea include maximum pooling, average pooling, and
sum pooling. Maximum pooling identifies the
highest value within the specified region as the
output, average pooling computes the mean of
the values, and sum pooling totals th sum pooling. Maximum pooling identifies the highest value within the specified region as the output, average pooling computes the mean of the values, and sum pooling totals the values within the region.
3.2.3 Spatial Atten highest value within the specified region as the output, average pooling computes the mean of the values, and sum pooling totals the values within the region.

Fracture Representation Module for Enhanced Scatter Represent output, average pooling computes the mean of
the values, and sum pooling totals the values
within the region.
3.2.3 Spatial Attention Module for Enhanced
Feature Representation
CBAM integrates spatial and channel attentio the values, and sum pooling totals the values
within the region.
3.2.3 Spatial Attention Module for Enhanced
Feature Representation
CBAM integrates spatial and channel attention
mechanisms, as illustrated in Figure 8. The within the region.

3.2.3 Spatial Attention Module for Enhanced

Feature Representation

CBAM integrates spatial and channel attention

mechanisms, as illustrated in Figure 8. The

metwork operates on two independent

dim 3.2.3 Spatial Attention Module for Enhanced
Feature Representation
CBAM integrates spatial and channel attention
mechanisms, as illustrated in Figure 8. The
network operates on two independent
dimensions—channel and spati

Industry Science and Engineering Vol. 1 No. 7, 2024

multi-layer perceptron (MLP) with shared this weight is multiplied weights. The MLP applies a sigmoid activation to produce new features

function to process and aggr *Industry Science and Engineering Vol. 1 No. 7, 2024*

multi-layer perceptron (MLP) with shared this weight is multiplied

weights. The MLP applies a sigmoid activation to produce new feature

function to process and aggr

the Contract of the Control of the Control of the Control of the input features
to produce new features influenced by the channel attention mechanism [20]. this weight is multiplied with the input features
to produce new features influenced by the
channel attention mechanism [20]. Constrained attention
this weight is multiplied with the input features
to produce new features influenced by the
channel attention mechanism [20].

Example 11 and the second of the second of the second bearings (B21).

By integrating the strengths of VGG-Net and the Convolutional Block Attention Module (CBAM

this model minimizes the loss of fault-bearin

information Figure 8. CBAM Attention Mechanism

By integrating the strengths of VGG-Net and the maps of size 7×7. The third

Convolutional Block Attention Module (CBAM), employs a 2×2 max pooling or

this model minimizes the loss of f Examples and the strengths of VGG-Net and the maps of size 7×7. The Convolutional Block Attention Module (CBAM), employs a 2×2 max poolities model minimizes the loss of fault-bearing same stride, halving the information d By integrating the strengths of VGG-Net and the maps of size 7×7 . The third Convolutional Block Attention Module (CBAM), employs a 2×2 max pooling or this model minimizes the loss of fault-bearing same stride, halving **Example 18 CBAM Attention Mechanism**

By integrating the strengths of VGG-Net and the maps of size 7×7. The the Convolutional Block Attention Module (CBAM), employs a 2×2 max pooling this model minimizes the loss of faul

Example Follow By integrating the strengths of VGG-Net and the maps of size 7×7. The this Convolutional Block Attention Module (CBAM), employs a 2×2 max pooling of this model minimizes the loss of fault-bearing same stri By integrating the strengths of VGG-Net and the maps of size '/ \times '. The convolutional Block Attention Module (CBAM), employs a 2 \times 2 max poor information during network propagation. It feature map. combines spatial att Convolutional Block Attention Module (CBAM), employs a 2×2 max pooling op this model mimizes the loss of fault-bearing same stride, halving the dime information during network propagation. It feature mp.
combines spat this model minimizes the loss of fault-bearing same stride, halving the d
information during network propagation. It feature map.
combines spatial attention with regularity of Incorporating the CBAM atte
change, effective Information during network propagation. It feature map.

combines spatial attention with regularity of Incorporating the CBAM

change, effectively focusing on the task of middle enhances f

infrared thermal imaging (IRT) combines spatial attention with regularity of
change, effectively focusing on the task of
middle enhances feature
infrared thermal imaging (IRT) classification for
followed by flattening the need-
bearings [21].
The algor change, effectively focusing on the task of middle enhances infrared thermal imaging (IRT) classification for followed by flattening to later of 512 neuros. The algorithm model is illustrated in Figure 9. are added, culmi Infrared thermal imaging (IRT) classification for

bearings [21].

The algorithm model is illustrated in Figure 9.

The initial size of the thermal image for friction

The initial size of the thermal image for friction

s bearings [21]. total of 512 neurons. Two

The algorithm model is illustrated in Figure 9.

total of 512 neurons. Two

torque bearings is 691×482 pixels, which is

torque bearings is 691×482 pixels, which is

torque bearin

Spatial
Module
Module
Module
maps of size 7×7. The third pooling layer
employs a 2×2 max pooling operation with the
same stride, halving the dimensions of each
feature map.
Incorporating the CBAM attention module in the
m Attention
Module

Module
 Example 1980
 Exa Example 19
 The Mechanism

maps of size 7×7. The third pooling layer

employs a 2×2 max pooling operation with the

same stride, halving the dimensions of each

feature map.

Incorporating the CBAM attention module in **are added**, the readentic beaution of the summary and 2×2 max pooling operation with the same stride, halving the dimensions of each feature map.
Incorporating the CBAM attention module in the middle enhances feature **shows**
 shows
 six a specifical corresponding the dimensions of size 7×7. The third pooling layer employs a 2×2 max pooling operation with the same stride, halving the dimensions of each feature map.

Incorporating t **Example 12**
 https: TX-7. The third pooling layer

employs a 2×2 max pooling operation with the

same stride, halving the dimensions of each

feature map.

Incorporating the CBAM attention module in the

middle enhance **notion Mechanism**
 notion Mechanism

maps of size 7×7 . The third pooling layer

employs a 2×2 max pooling operation with the

same stride, halving the dimensions of each

feature map.

Incorporating the CBAM atte **ntion Mechanism**
maps of size 7×7 . The third pooling layer
employs a 2×2 max pooling operation with the
same stride, halving the dimensions of each
feature map.
Incorporating the CBAM attention module in the
middle maps of size 7×7 . The third pooling layer
employs a 2×2 max pooling operation with the
same stride, halving the dimensions of each
feature map.
Incorporating the CBAM attention module in the
incorporating the CBAM a employs a 2×2 max pooling operation with the
same stride, halving the dimensions of each
feature map.
Incorporating the CBAM attention module in the
middle enhances feature representation,
followed by flattening the n same stride, halving the dimensions of each
feature map.
Incorporating the CBAM attention module in the
middle enhances feature representation,
followed by flattening the neurons to yield a
total of 512 neurons. Two fully feature map.

Incorporating the CBAM attention module in the

middle enhances feature representation,

followed by flattening the neurons to yield a

total of 512 neurons. Two fully connected layers

are added, culminating Incorporating the CBAM attention module in the
middle enhances feature representation,
followed by flattening the neurons to yield a
total of 512 neurons. Two fully connected layers
are added, culminating in an output laye

middle enhances feature representation,
followed by flattening the neurons to yield a
total of 512 neurons. Two fully connected layers
are added, culminating in an output layer with
bis neurons, each corresponding to a sp followed by flattening the neurons to yield a
total of 512 neurons. Two fully connected layers
are added, culminating in an output layer with
six neurons, each corresponding to a specific
bearing state. For optimization, t fotal of 512 neurons. Two fully connected layers
are added, culminating in an output layer with
six neurons, each corresponding to a specific
bearing state. For optimization, the root mean
square propagation (RMSprop) algo

Example 19 Academic Education
 Consequence
 Conseque COMBET CONTROVIDE CONTROVIDED SET ACCEDED ACCEDED ACCEDED ACCEDED AND RELATION CONSTRAINING IN ACCUS AND ACCUSE AND ACCUSE AND CONSIDED AND CONSIDED AND MOVED TO A module, which enhances initial training in bearing fault (a) Solution Controllery Science and Enginee

Eads to a reduction in loss and an improvement 10 (d) illustrates the com

in accuracy to approximately 95.81%. Figure 10 methods, which enhance

(c) shows the addition of the **Contract Education**
 Contract Education
 Contract Education

In accuracy to a

proximately 95.81%. Figure 10 methods, which enhances

(c) shows the addition of the CBAM attention

module, which enhances initial train **Publishing House**
 Publishing House
 Publishing House
 Industry Science and Engineering

leads to a reduction in loss and an improvement

in accuracy to approximately 95.81%. Figure 10 methods, which enhances the

try Science and Engineering Vol. 1 No. 7, 2024
10 (d) illustrates the combined approach of both
methods, which enhances the verification rate,
reduces iterations, and achieves 100% accuracy
in bearing fault classification try Science and Engineering Vol. 1 No. 7, 2024
10 (d) illustrates the combined approach of both
methods, which enhances the verification rate,
reduces iterations, and achieves 100% accuracy
in bearing fault classification try Science and Engineering Vol. 1 No. 7, 2024
10 (d) illustrates the combined approach of both
methods, which enhances the verification rate,
reduces iterations, and achieves 100% accuracy
in bearing fault classification try Science and Engineering Vol. 1 No. 7, 2024
10 (d) illustrates the combined approach of both
methods, which enhances the verification rate,
reduces iterations, and achieves 100% accuracy
in bearing fault classification try Science and Engineering Vol. 1 No. 7, 2024
10 (d) illustrates the combined approach of both
methods, which enhances the verification rate,
reduces iterations, and achieves 100% accuracy
in bearing fault classification

Parameters are calculated: The extention of Bearing Fault Diagnosis Results 3.3 Diagnosis of Friction Torque Faults Using parameters quantitative characteristics of the there are calculated: the mean (AVG), and constrai STRINGTON CONSULTER THE CONSULTER CONSULTER (C) CONSULTED THE CONSULTED (C) CONSULTED THE CONSULTED THE PCA and SVM

STATE preprocessing the thermal images of training and classification

of training and classification to (CRAM-CNN)

(c) CBAM-CNN

(c) CBAM-CNN

(d) Algorithm in this
 Eigure 10. Comparison of Bearing Fault Diagnosis Results

parameters quantitatively
 PCA and SVM

After preprocessing the thermal images of training and cl Uniformity (UF), and correlation (CL). These

uniformity (U) Algorithm in the Figure 10. Comparison of Bearing Fault Diagnosis Results

Diagnosis of Friction Torque Faults Using

PCA and SVM

After preprocessing the therma

The same of the classification and magnetic services and magnetic services are determined as a crucial foundation of a service is a crucial foundation. Each feature is a crucial foundation. Each feature is a crucial found **Example 12**
 Example 12
 normalized by subtraction
 normalized by subtraction
 normalized by subtraction of the minimum value of

the original thermal image and serve

the original thermal image and dividing by t **Example 12**
 Alternal in the original thermal images and served and dividing Fault Diagnosis Results
 Example 12
 Exa Example 12
 Example 12 Figure 1.1 The contract of the contract of the state of a range of [0, 1].

The contract of the thermal images and serve as a crucial foundation for subsequent model

training and classification. Each feature is

normalize **Principal Component Analysis (PCA)** is
 Principal Component Analysis (Partna Analysis Results
 Principal Component Analysis (PCA)
 Principal Component Analysis (PCA)
 Principal Component Analysis (PCA) is
 Princ external to Algorithm in this article

ing Fault Diagnosis Results

parameters quantitatively describe the

characteristics of the thermal images and serve

as a crucial foundation for subsequent model

training and classi (d) Algorithm in this article

ing Fault Diagnosis Results

parameters quantitatively describe the

characteristics of the thermal images and serve

as a crucial foundation for subsequent model

training and classificatio

Industry Science and Engineering Vol. 1 No. 7, 2024
matrix of the normalized features, maximizing
the variance of the transformed data. The
features are then sorted based on their
corresponding eigenvalues. By selecting **Industry Science and Engineering Vol. 1 No. 7, 2024**

matrix of the normalized features, maximizing

the variance of the transformed data. The

features are then sorted based on their

corresponding eigenvalues. By selec **Industry Science and Engineering Vol. 1 No. 7, 2024**

matrix of the normalized features, maximizing

the variance of the transformed data. The

features are then sorted based on their

sorresponding eigenvalues. By selec **Industry Science and Engineering Vol. 1 No. 7, 2024**

matrix of the normalized features, maximizing

the variance of the transformed data. The

features are then sorted based on their

corresponding eigenvalues. By selec **Industry Science and Engineering Vol. 1 No. 7, 2024**

matrix of the normalized features, maximizing

the variance of the transformed data. The

features are then sorted based on their

corresponding eigenvalues. By selec **Industry Science and Engineering Vol. 1 No. 7, 2024**

matrix of the normalized features, maximizing

the variance of the transformed data. The

features are then sorted based on their

corresponding eigenvalues. By selec **Industry Science and Engineering Vol. 1 No. 7, 2024**

matrix of the normalized features, maximizing

the variance of the transformed data. The

features are then sorted based on their

corresponding eigenvalues. By selec **Industry Science and Engineering Vol. 1 No. 7, 2024**

matrix of the normalized features, maximizing

the variance of the transformed data. The

features are then sorted based on their

corresponding eigenvalues. By selec **Industry Science and Engineering Vol. 1 No. 7, 2024**

matrix of the normalized features, maximizing

the variance of the transformed data. The

features are then sorted based on their

corresponding eigenvalues. By selec **Industry Science and Engineering Vol. 1 No. 7, 2024**

matrix of the normalized features, maximizing

the variance of the transformed data. The

features are then sorted based on their

corresponding eigenvalues. By selec performance. Industry Science and Engineering Vol. 1 No. 7, 2024

matrix of the normalized features, maximizing

the variance of the transformed data. The

features are then sorted based on their

corresponding eigenvalues. By selecti Fraction and Extending linear, maximizing the transformalized features, maximizing the variance of the transformed data. The features are then sorted based on their corresponding eigenvalues. By selecting a specific numbe matrix of the normalized teatures, maximizing
the variance of the transformed data. The
features are then sorted based on their
corresponding eigenvalues. By selecting a
specific number of principal components, we
control the variance of the transformed data. The

features are then sorted based on their

secreting eigenvalues. By selecting a

specific number of principal components, we

control the variance retained from the original

feat features are then sorted based on their
corresponding eigenvalues. By selecting a
specific number of principal components, we
control the variance retained from the original
features, thereby determining the dimensionalit corresponding eigenvalues. By selecting a
specific number of principal components, we
control the variance retained from the original
features, thereby determining the dimensionality
reduction helps to eliminate redundant

reduction helps to eliminate redundant features,
preventing overfitting and enhancing model
In this study, various SVM kernel functions—
including linear, polynomial, Gaussian, and
including linear, polynomial, Gaussian, a In this study, various SVM kernel tunctions—

including linear, polynomial, Gaussian, and

mechanism and the VGG-N

signoid—are evaluated for classification

success rates. Among these, the quadratic kernel

function prov including linear, polynomial, Gaussian, and

sigmoid—are evaluated for classification on fault detection perfs

success rates. Among these, the quadratic kernel

function proves most effective for handling

complex multi-c sigmoid—are evaluated for classification on fault detection perform
success rates. Among these, the quadratic kernel
function tests. The result
function proves most effective for handling
complex multi-class data.
To clas success rates. Among these, the quadratic kernel

complex multi-class data.

Complex multi-class data.

To classify unknown samples, we calculate the

complex multi-class data.

To classify unknown samples, we calculate t function proves most effective for handling

function provements are eff

complex multi-class data.

To classify unknown samples, we calculate the

distance between features extracted from

different fault cases and the l complex multi-class data.
To classify unknown samples, we calculate the
distance between features extracted from
different fault cases and the lossless features.
Once the distance from the known group
exceeds a certain th different fault cases and the lossless features.

The CBAM mix

different fault cases and the lossless features.

the CBAM mix

exceeds a certain threshold, these unknown group

samples can be categorized accordingly. The different fault cases and the lossless teatures.

The CBAM mixed domain atter

exceeds a certain threshold, these unknown

grows Precision and score

exceeds a certain threshold, these unknown

morst significant features i Once the distance from the known group

exceeds a certain threshold, these unknown

smeptes can be categorized accordingly. The six

most significant features identified are M, KU, E,

STD, EN, and KU. During this process exceeds a certain threshold, these unknown

samples can be categorized accordingly. The six

method's ability to effective

moret significant features identified are M, KU, E,

STD, EN, and KU. During this process, PCA

fi samples can be categorized accordingly. The six

most significant features identified are M, KU, E,

smethod's ability to

STD, EN, and KU. During this process, PCA

filters out less relevant features and combines

data u

most significant teatures identified are M, KU, E,

filters out less relevant features and combines

filters out less relevant features and combines

data under the same load into a 6×6 feature

matrix, which serves as th STD, EN, and KU. During this process, PCA information, emphasizin
filters out less relevant features and combines the channel and reducing
data under the same load into a 6×6 feature sequence number 3, the
further classif the sout less relevant teatures and combines

matrix, which serves as the input vector for

further classification, facilitating SVM-based

further classification, facilitating SVM-based

bearing fault diagnosis.
 4. Expe data under the same load into a 6×6 teature

matrix, which serves as the input vector for

further classification, facilitating SVM-based

bearing that VGG-Net effect

bearing fault diagnosis.
 4. Experimental Results an matrix, which serves as the input vector for
further classification, facilitating SVM-based
bearing fault diagnosis.

Leavening fault diagnosis.
 $\begin{array}{ll}\n\text{4. Experimental Results and Discussion} \\
\text{The performance of the proposed algorithm is} \\
\text{reliming that VGG-Net}\n\end{array}$
 $\begin{array}{ll}\n\text{4. Experimental Results and Discussion} \\$ further classification, facilitating SVM-based

bearing fault diagnosis.

4. **Experimental Results and Discussion**

The performance of the proposed algorithm is

comfusion The performance of the proposed algorithm is

com bearing fault diagnosis.

4. Experimental Results and Discussion

The performance of the proposed algorithm is

compared to that of SVM. For multi-class

predictions, the results are organized into a 2D

confusion matrix, **4. Experimental Results and Discussion**

The performance of the proposed algorithm is

compared to that of SVM. For multi-class

predictions, the results are organized into a 2D

sequence number 4 combine

predictions, t **4. Experimental Results and Discussion**

The performance of the proposed algorithm is fusion at each layer.

compared to that of SVM. For multi-class

predictions, the results are organized into a 2D

confusion matrix, w The performance of the proposed algorn
compared to that of SVM. For mul
predictions, the results are organized into
confusion matrix, where each class corre
to a "row-by-column" structure. The dime
of the matrix reflect t tures identified are M, KU, E,

I. During this process, PCA

I. During this process, PCA

I. During this process and combines

want features and combines

the channel and reducing cla

me load into a 6×6 feature sequence During throusay, First

rand features and combines

the channel and reducing class

enters are the proposed with the sequence number 3, the im

and feature sais the input vector for

adaptive spatial feature fusis

is.

s

$$
Accuracy = \frac{TP + TN}{TP + FP + FN + TN} \times 100\% \quad (9) \qquad \frac{3}{4} \qquad \frac{\times}{4} \qquad \frac{\sqrt{95.75}}{\sqrt{99.84}} \qquad 99.98
$$
\n
$$
Precision = \frac{TP}{TP + FP} \times 100\%; \qquad \qquad 4.2 \qquad Comparison of Fault Diagnosis Outcomes:\n
$$
Precision_{\text{macro}} = \frac{\sum_{i=1}^{L} \text{precision}}{|L|} \qquad \qquad \text{The bearing classification method presented in this article utilizes features extracted from the}
$$
$$

Re *call* =
$$
\frac{TP}{TP \times FN} \times 100\%
$$
;
\nRe *call* =
$$
\frac{TP}{TP \times FN} \times 100\%
$$
;
\nRe *call* =
$$
\frac{\sum_{i=1}^{L} \text{Re call}}{|L|}
$$
;
\n
$$
\frac{2 \times \text{Precision}_{\text{macro}} \times \text{Recall}_{\text{macro}}}{\text{Precision}_{\text{macro}} + \text{Recall}_{\text{macro}}}
$$
 (12)
\n**n Experiment**
\nthe impact of enhanced strategies,
\n
$$
\frac{PRAM \text{ mixed domain attention}}{\text{transition}}
$$

$$
Recall_{macro} = \frac{\sum_{i=1}^{L} Recall}{|L|}
$$

2×Precision × Recall

$$
Flscore_{macro} = \frac{2 \times 11 \text{ Ctsion}_{macro} \times 18 \text{ Ctsion}_{macro}}{\text{Precision}_{macro} + \text{Recall}_{macro}} \quad (12)
$$

specific number of principal components, we

control the variance retained from the original

for the new feature space. This dimensionality

of the new feature space. This dimensionality

reduction helps to eliminate red control the variance retained from the original

features, thereby determining the dimensionality

of the new feature space. This dimensionality

reduction helps to eliminate redundant features,

preventing overfitting an teatures, thereby determining the dimensionality

of the new feature space. This dimensionality

of the new feature space. This dimensionality

precionting overfitting and enhancing model

precionting overfitting and enha of the new teature space. This dimensionality

precenting coeffitting and enhancing model

precenting overfitting and enhancing model

precenting overfitting and enhancing model

preformance.

In this study, various SVM k preventing overfitting and enhancing model

In this study, various SVM kernel functions—

including linear, polynomial, Gaussian, and

including linear, polynomial, Gaussian, and

sigmoid—are evaluated for classification a performance. To evaluate the impact of enhinomics in this study, various SVM kernel functions—
including linear, polynomial, Gaussian, and mechanism and the VGG-Net
sigmoid—are evaluated for classification on fault detecti signincent returns to entropy the method solidity to effectively utilize features in
section of the method soliding the state and continuous terms of soliding the state and continuous terms of soliding the channel and con **Example 10.** The primarion, emphasizing reaveaut leadings and into a 6×6 feature and combines the channel and reducing classification errors as the input vector for sequence number 3, the incorporation of series series a **Property:** Academic Education

Re call = $\frac{TP}{TP \times FN} \times 100\%$;

Re call $\frac{TP}{TP \times FN} \times 100\%$;

Re call $\frac{2 \times \text{Precision}_{macro}}{|L|}$

Liscore_{mazo} = $\frac{2 \times \text{Precision}_{macro} \times \text{Recall}_{macro}}{\text{Precision}_{macro} + \text{Recall}_{macro}}$ (12)

Nolation Experiment

valuate the **Contract Education**
 $all = \frac{TP}{TP \times FN} \times 100\%;$
 $all_{macro} = \frac{\sum_{i=1}^{L} \text{Re call}}{|L|}$
 $\times \text{Precision}_{macro} \times \text{Recall}_{mono}$ (12)
 Precision_{necro} + Recall_{necro} (12)
 Precision_{necro} + Recall_{necro} (12)
 Precision_{necro} + Recall_{necro} **Propagate 11**
 $\text{Recall} = \frac{TP}{TP \times FN} \times 100\%;$
 $\text{Recall}_{\text{macro}} = \frac{\sum_{i=1}^{L} \text{Recall}}{|L|}$
 $\text{Flscore}_{\text{macro}} = \frac{2 \times \text{Precision}_{\text{macro}} \times \text{Recall}_{\text{micro}}}{\text{Precision}_{\text{macro}} + \text{Recall}_{\text{macro}}}$ (12)
 Ablation Experiment

evaluate the impact of enhanced strategi **4.1 Ablation Experiment**

TP $\frac{TP}{TP \times FN} \times 100\%$;
 $\text{Re call}_{\text{macro}} = \frac{\sum_{i=1}^{L} \text{Re call}}{|L|}$
 $\text{Flscore}_{\text{macro}} = \frac{2 \times \text{Precision}_{\text{macro}} \times \text{Recall}_{\text{macro}}}{\text{Precision}_{\text{macro}}}$ (12)
 4.1 Ablation Experiment

To evaluate the impact of enhanced strate **1**

Recall = $\frac{TP}{TP \times FN}$ × 100%;

Recall = $\frac{TP}{TP \times FN}$ × 100%;

Recall $\frac{\sum_{i=1}^{L} \text{Re call}}{|L|}$ (11)
 $\text{Re call}_{\text{macro}} = \frac{2 \times \text{Precision}_{\text{macro}} \times \text{Recall}_{\text{macro}}}{\text{Precision}_{\text{macro}} + \text{Recall}_{\text{macro}}}$ (12)
 4.1 Ablation Experiment

To evaluate the Re call = $\frac{TP}{TP \times FN} \times 100\%$;

Re call = $\frac{TP}{TP \times FN} \times 100\%$;

Re call $\frac{1}{|L|}$

Flscore_{ment} = $\frac{2 \times \text{Precision}_{\text{macro}} \times \text{Recall}_{\text{macro}}}{\text{Precision}_{\text{macro}} + \text{Recall}_{\text{macro}}}$ (12)

4.1 Ablation Experiment

To evaluate the impact of enhanc Re call = $\frac{TP}{TP \times FN} \times 100\%$;

Re call _{macro} = $\frac{\sum_{i=1}^{L} \text{Re call}}{|L|}$

Flscore_{macro} = $\frac{2 \times \text{Precision}_{\text{macro}} \times \text{Recall}_{\text{macro}}}{\text{Precision}_{\text{macro}} + \text{Recall}_{\text{macro}}}$ (12)

4.1 **Ablation Experiment**

To evaluate the impact of enhanced stra Re call = $\frac{IP}{TP \times FN} \times 100\%$;

Re call _{macro} = $\frac{\sum_{i=1}^{L} \text{Re call}}{|L|}$

Flscore_{macro} = $\frac{2 \times \text{Precision}_{m\alpha r} \times \text{Recall}_{m\alpha r}}{\text{Precision}_{m\alpha r} + \text{Recall}_{m\alpha r}}$ (12)

4.1 **Ablation Experiment**

To evaluate the impact of enhanced strat TP × FN (11)

Re call_{macro} = $\frac{\sum_{i=1}^{L}$ Re call
 $|L|$

Flscore_{macro} = $\frac{2 \times \text{Precision}_{\text{macro}} \times \text{Recall}_{\text{macro}}}{\text{Precision}_{\text{macro}} + \text{Recall}_{\text{macro}}}$ (12)

4.1 Ablation Experiment

To evaluate the impact of enhanced strategies,

such as Re call_{macro} = $\frac{\sum_{i=1}^{L}$ Re call
 $|L|$
 F lscore_{mcov} = $\frac{2 \times \text{Precision}_{\text{macro}} \times \text{Recall}_{\text{macro}}}{\text{Precision}_{\text{macro}} + \text{Recall}_{\text{macro}}}$ (12)
 4.1 Ablation Experiment

To evaluate the impact of enhanced strategies,

such as the CBAM mi Re call_{macro} = $\frac{Z_{i=1}}{|L|}$

Flscore_{macro} = $\frac{2 \times \text{Precision}_{mzero} \times \text{Recall}_{mzero}}{\text{Precision}_{mzero} + \text{Recall}_{mono}}$ (12)

4.1 **Ablation Experiment**

To evaluate the impact of enhanced strategies,

such as the CBAM mixed domain attention

me Flscore_{mare} $= \frac{2 \times \text{Precision}_{\text{macro}} \times \text{Recall}_{\text{macro}}}{\text{Precision}_{\text{macro}} + \text{Recall}_{\text{mono}}}$ (12)
 4.1 Ablation Experiment

To evaluate the impact of enhanced strategies,

such as the CBAM mixed domain attention

mechanism and the VGG-Net net *Flscore_{macro}* = $\frac{2 \times \text{Precision}_{m\text{zero}} \times \text{Recall}_{m\text{zero}}}{\text{Precision}_{m\text{zero}}}$ (12)
4.1 Ablation Experiment To evaluate the impact of enhanced strategies, such as the CBAM mixed domain attention mechanism and the VGG-Net network mod FISCOPE<sub>*mace* = $\frac{m_{\text{max}}}{\text{Precision}_{\text{max}p}}$ + Recall_{mace} (12)

4.1 Ablation Experiment

To evaluate the impact of enhanced strategies,

such as the CBAM mixed domain attention

mechanism and the VGG-Net network model,

o</sub> **4.1 Ablation Experiment**
To evaluate the impact of enhanced strategies, such as the CBAM mixed domain attention mechanism and the VGG-Net network model, on fault detection performance, we conducted ablation tests. The re **4.1 Ablation Experiment**
To evaluate the impact of enhanced strategies,
such as the CBAM mixed domain attention
mechanism and the VGG-Net network model,
on fault detection performance, we conducted
ablation tests. The res **4.1 Ablation Experiment**
To evaluate the impact of enhanced strategies,
such as the CBAM mixed domain attention
mechanism and the VGG-Net network model,
on fault detection performance, we conducted
ablation tests. The re To evaluate the impact of enhanced strategies,
such as the CBAM mixed domain attention
mechanism and the VGG-Net network model,
on fault detection performance, we conducted
ablation tests. The results indicate that these
i such as the CBAM mixed domain attention
mechanism and the VGG-Net network model,
on fault detection performance, we conducted
ablation tests. The results indicate that these
improvements are effective, with Precision and
s mechanism and the VGG-Net network model,
on fault detection performance, we conducted
ablation tests. The results indicate that these
improvements are effective, with Precision and
experienced as the evaluation metrics. Th on fault detection performance, we conducted
ablation tests. The results indicate that these
improvements are effective, with Precision and
score selected as the evaluation metrics. The
experimental results are summarized ablation tests. The results indicate that these
improvements are effective, with Precision and
score selected as the evaluation metrics. The
experimental results are summarized in Table 2.
From the findings, it is evident mprovements are effective, with Precision and
score selected as the evaluation metrics. The
experimental results are summarized in Table 2.
From the findings, it is evident that introducing
the CBAM mixed domain attention score selected as the evaluation metrics. The
experimental results are summarized in Table 2.
From the findings, it is evident that introducing
the CBAM mixed domain attention mechanism
into the backbon network (sequence n experimental results are summarized in Table 2.
From the findings, it is evident that introducing
the CBAM mixed domain attention mechanism
into the backbone network (sequence number 2)
improves Precision and score by 3.22 From the findings, it is evident that introducing
the CBAM mixed domain attention mechanism
into the backbone network (sequence number 2)
improves Precision and score by 3.22% and
2.09%, respectively. This demonstrates th the CBAM mixed domain attention mechanism
into the backbone network (sequence number 2)
improves Precision and score by 3.22% and
2.09%, respectively. This demonstrates the
method's ability to effectively utilize feature
i into the backbone network (sequence number 2)
improves Precision and score by 3.22% and
2.09%, respectively. This demonstrates the
method's ability to effectively utilize feature
information, emphasizing relevant features mproves Precision and score by 3.22% and 2.09%, respectively. This demonstrates the method's ability to effectively utilize feature information, emphasizing relevant features in the channel and reducing classification err 2.09%, respectively. This demonstrates the
method's ability to effectively utilize feature
information, emphasizing relevant features in
the channel and reducing classification errors. In
sequence number 3, the incorporati method's ability to effectively utilize feature
information, emphasizing relevant features in
the channel and reducing classification errors. In
sequence number 3, the incorporation of the
adaptive spatial feature fusion n momention, emphasizing relevant features in
the channel and reducing classification errors. In
sequence number 3, the incorporation of the
adaptive spatial feature fusion network VGG-
Net results in a 1.8% increase in scor

as the input vector for

adaptive spatial feature fusion network

facilitating SVM-based

Net results in a 1.8% increase in

confirming the VGG-Net effectively are

its and Discussion

the learning of irrelevant features
 the channel and reducing classification errors. In
sequence number 3, the incorporation of the
adaptive spatial feature fusion network VGG-
Net results in a 1.8% increase in score,
confirming that VGG-Net effectively miti sequence number 3, the incorporation of the
adaptive spatial feature fusion network VGG-
Net results in a 1.8% increase in score,
confirming that VGG-Net effectively mitigates
the learning of irrelevant features through
w adaptive spatial feature fusion network VGG-
Net results in a 1.8% increase in score,
confirming that VGG-Net effectively mitigates
the learning of irrelevant features through
wight adjustments, ensuring focused feature
f unis in a 1.8% increase in score,
the state of the SGG-Net effectively mitigates
ring of irrelevant features through
adjustments, ensuring focused feature
each layer.
e number 4 combines both strategies,
that this multi-st

4.2 Comparison of Fault Diagnosis Outcomes:

this article utilizes features extracted from the

Categorizing six distinct bearing conditions. This *Industry Science and Engineering*
categorizing six distinct bearing conditions. This across various scenarios. In or
study reveals that the proposed method encounter **State of the proposed method**
 State of the proposed method
 CALC ACCES
 CAL COMBUT ACCOMORER CONTINUIST ACCORDING THE SURFER CONDUCTS AND THE PROPRET PRODUCTS (SVM) AND THE SURFER CONTINUIST AND THE SURFER Academic Education
 Conserved Fundishing House
 Conserved Fundishing House
 Conserved Fundishing House
 Conserved Engineering

categorizing six distinct bearing conditions. This across various scenarios. In study **CLE Academic Education**
 CLE Academic Education
 CLE Publishing House
 CLE PUBLISHING TOWER THEORY ACTES (SVM) in across various scenarios. In c

study reveals that the proposed method encounter classification error **CREM Academic Education**
 CALCONG PUDISHING HOWER CONCITED ACCES
 CALCONG THEORY SCIPLE MORE THEORY ACCES

Study reveals that the proposed method encounter classification errors in

outperforms support vector machines **CRE Academic Education**
 CREC Publishing House Industry Science and Eng

categorizing six distinct bearing conditions. This across various scena

study reveals that the proposed method encounter classification

outper **CONFIGURER CONCERT CO COMBUS Analysis** Education
 Analysis of Publishing House
 COMBUS Analysis of The COMBUS AND AND AND THE CONDUCT TO THE SET AND AND AN ANALYST CONDUCT SURVEY THE SURVEY ONE THAN SURVEY ONE SURVEY SURVEY SURVEY SURVEY SU COMET And SECT SECT CONSTRAND THEOTER CONDUCTED SERVIDE SERVIDES THE SERVIDE SERVIDENT CONSULTER SERVIDENT ON THE SERVIDENT ON THE SERVIDENT ON THE SERVIDENT OF THE SERVIDENT OF THE SERVIDENT OF THE SERVIDENT OF THE SERVI Conclusion The Conclusion Conclusion Conclusion Conclusion
 Conclusion Conclusions and Engine categorizing six distinct bearing conditions. This across various scenarios

study reveals that the proposed method encounte method reliably identifies fault types in images

Industry Science and Engineering Vol. 1 No. 7, 2024

try Science and Engineering Vol. 1 No. 7, 2024
across various scenarios. In contrast, SVM may
encounter classification errors in some instances,
highlighting the advantages of this algorithm for
bearing fault diagnosis. try Science and Engineering Vol. 1 No. 7, 2024
across various scenarios. In contrast, SVM may
encounter classification errors in some instances,
highlighting the advantages of this algorithm for
bearing fault diagnosis. As *try Science and Engineering Vol. 1 No. 7, 2024*
across various scenarios. In contrast, SVM may
encounter classification errors in some instances,
highlighting the advantages of this algorithm for
bearing fault diagnosis. try Science and Engineering Vol. 1 No. 7, 2024
across various scenarios. In contrast, SVM may
encounter classification errors in some instances,
highlighting the advantages of this algorithm for
bearing fault diagnosis. As *try Science and Engineering Vol. 1 No. 7, 2024*
across various scenarios. In contrast, SVM may
encounter classification errors in some instances,
highlighting the advantages of this algorithm for
bearing fault diagnosis. try Science and Engineering Vol. 1 No. 7, 2024
across various scenarios. In contrast, SVM may
encounter classification errors in some instances,
highlighting the advantages of this algorithm for
bearing fault diagnosis. As *try Science and Engineering Vol. 1 No. 7, 2024*
across various scenarios. In contrast, SVM may
encounter classification errors in some instances,
highlighting the advantages of this algorithm for
bearing fault diagnosis. try *Science and Engineering Vol. 1 No. 7, 2024*
across various scenarios. In contrast, SVM may
encounter classification errors in some instances,
highlighting the advantages of this algorithm for
bearing fault diagnosis. try Science and Engineering Vol. 1 No. 7, 2024
across various scenarios. In contrast, SVM may
encounter classification errors in some instances,
highlighting the advantages of this algorithm for
bearing fault diagnosis. As try Science and Engineering Vol. 1 No. 7, 2024
across various scenarios. In contrast, SVM may
encounter classification errors in some instances,
highlighting the advantages of this algorithm for
bearing fault diagnosis. As try Science and Engineering Vol. 1 No. 7, 2024
across various scenarios. In contrast, SVM may
encounter classification errors in some instances,
highlighting the advantages of this algorithm for
bearing fault diagnosis. As **Table 3. Performance Comparison of Bearing Fault Diagnosis Using PCA-SVM (The proposed and VGG-

Table 3. Performance COM** (**Table 3. Proposed method** (**SVA**) in healing fault diagnosis. As shown in Table 4, a ssificatio In Imaging the advantages of this and

ult

bearing fault diagnosis. As shown in

comparison of evaluation metrics b

of supervised machine learning algo

PCA-SVM indicates superior perf

accuracy, precision, recall, and o

accuracy Precision Recall F.Score accuracy Precision

IR 98.21 81.23 83.11 82.56 99.83 98.

OR 98.42 89.31 88.35 85.93 100 99.

IR 98.64 95.21 92.42 74.74 99.83 99.

BD 98.86 92.67 87.12 83.42 100 99.

CD 98.57 89.42 94.23 HB 98.21 81.23 83.11 82.56 99.83 98.23

OR 98.42 89.31 88.35 85.93 100 99.31

IR 98.64 95.21 92.42 74.74 99.83 99.21

IR 98.86 95.27 87.12 83.42 100 99.67

CD 98.57 89.42 94.23 87.95 99.31 98.42
 5. Conclusion

This arti $\begin{array}{|l|l|l|l|l|}\n\hline\n\text{OR} & 98.42 & 89.31 & 88.35 & 85.93 & 100 & 99.31 \\
\hline\n\text{IR} & 98.64 & 95.21 & 92.42 & 74.74 & 99.83 & 99.21 \\
\hline\n\text{BD} & 98.86 & 92.67 & 87.12 & 83.42 & 100 & 99.67 \\
\hline\n\text{CD} & 98.57 & 89.42 & 94.23 & 87.95 & 99.31 & 98.4$ TR 98.64 95.21 92.42 74.74 99.83 9

BD 98.86 92.67 87.12 83.42 100 9

CD 98.57 89.42 94.23 87.95 99.31 99.

CD 98.57 89.42 94.23 87.95 99.31 Both models were

six different bearing

This article introduces a method for cl BD 98.86 92.67 87.12 83.42 100 99.67

CD 98.57 89.42 94.23 87.95 99.31 98.42

Both models were trains

and three introduces a method for classifying

six different bearing courses in the set of the set of the set of the s CD 98.57 89.42 94.23 87.95 99.31 98.42

Both models were trained

For a conclusion

This article introduces a method for classifying

sasessed the effectivene

bearing fault images using CBAM and VGG-

for diagnosing bear 5. Conclusion

Expection and the six different bearing condition

This article introduces a method for classifying

bearing fault images using CBAM and VGG-

Net within a convolutional neural network

fault scenarios. The **S. Conclusion**

became fant the introduces a method for classifying

becaming fant the effective

becaming fault images using CBAM and VGG-

Net within a convolutional neural network

fault scenarios. The

(CNN) framework This article introduces a method for classifying

bearing fault images using CBAM and VGG-

Net within a convolutional neural network

(CNN) framework. Initially, thermal image

was validated using extensi

data of bearing bearing tault images using CBAM and VGG-

Net within a convolutional neural network

(CNN) framework. Intially, thermal image

(data of bearings was collected and including thermal image

preprocessed with discrete wavelet Net within a convolutional neural network

(CNN) framework. Initially, thermal image

data of bearings was collected and including thermal

data of bearings was collected and including thermal

preprocessed with discrete w propagation. data of bearings was collected and including thermal im-
preprocessed with discrete wavelet transform. achieving a classification
and a batch normalization (BN) layer was These findings underscon-
the number of steps for e preprocessed with discrete wavelet transform. achieving a classification

incorporated after the convolutional layers, and

the number of steps for each convolutional layers, and

the number of steps for each convolution
 A batch normalization (BN) layer was

incorporated after the convolutional layers, and

this approach for diagu

operation was increased to enhance

performance. To accommodate multi-

classification scenarios and mitigate morporated after the convolutional layers, and
the number of steps for each convolution faults.

operation was increased to enhance

performance. To accommodate multi-

classification scenarios and mitigate issues like Thi the number of steps for each convolution

operation was increased to enhance

performance. To accommodate multi-

classification scenarios and mitigate issues like

This paper was

gradient vanishing, we selected the Softm

Example 18 and 19 and 18 and 19 and 19 $\begin{array}{|l|l|} \hline \text{D} & 0 & 0 & 0 & 881 & 0 \\ \hline \text{D} & 1 & 0 & 0 & 0 & 881 \\ \hline \text{-**SVM and VGG-CBAM-CNN} & & & & \\ \hline \text{VGG-CBAM-CNN} & & & \\ \hline \text{accuracy} & \text{Precision} & \text{Recall} & \text{F.Score} \\ \hline \text{99.83} & 98.23 & 99.51 & 92.97 \\ \hline \text{100} & 99.31 & 99.64 & 91.42 \\ \hline \text{99.83} & 99.21**$ fault scenarios. The proposed CNN method **EXECT ANTION SET USING A CONSTRESS CONSTRESS SECT ANTI-ORIGATION**
 EXECUTE 100 PECISION Recall F.Score
 99.83 98.23 99.51 92.97
 100 99.31 99.64 91.42
 100 99.67 99.12 99.48
 100 99.67 VGG-CBAM-CNN

e accuracy Precision Recall F.Score

99.83 98.23 99.51 92.97

100 99.31 99.64 91.42

99.83 99.21 92.42 99.48

100 99.67 99.12 99.45

99.31 98.42 94.23 99.51

Both models were trained on torque data from

six acuracy Precision Recall F.Score

99.83 98.23 99.51 92.97

100 99.31 99.64 91.42

99.83 99.21 92.42 99.48

100 99.67 99.12 99.45

99.31 98.42 94.23 99.51

Both models were trained on torque data from

six different bearing 99.83 98.23 99.51 92.97

100 99.31 99.64 91.42

99.83 99.21 92.42 99.48

100 99.67 99.12 99.45

99.31 98.42 94.23 99.51

Both models were trained on torque data from

six different bearing conditions. The study also

asse 100 99.31 99.64 91.42

99.83 99.21 92.42 99.48

100 99.67 99.12 99.45

99.31 98.42 94.23 99.51

Both models were trained on torque data from

six different bearing conditions. The study also

assessed the effectiveness of faults. Both models were trained on torque data from
six different bearing conditions. The study also
assessed the effectiveness of thermal imaging
for diagnosing bearing faults across various
fault scenarios. The proposed CNN met six different bearing conditions. The study also
assessed the effectiveness of thermal imaging
for diagnosing bearing faults across various
fault scenarios. The proposed CNN method
was validated using extensive datasets,
i assessed the effectiveness of thermal imagin
for diagnosing bearing faults across various
fault scenarios. The proposed CNN metho
was validated using extensive dataset
including thermal images of bearing
achieving a classi was validated using extensive datasets,

including thermal images of bearings,

achieving a classification accuracy of 99.80%.

These findings underscore the advantages of

this approach for diagnosing bearing torque

faul

Acknowledgments

References

- ding thermal images of bearings,
eving a classification accuracy of 99.80%.
se findings underscore the advantages of
approach for diagnosing bearing torque
ts.
nowledgments
spaper was supported by Tianjin
mece and Technolo eving a classification accuracy of 99.80%.
See findings underscore the advantages of
approach for diagnosing bearing torque
ts.
nowledgments
spaper was supported by Tianjin
mece and Technology Plan Project under
t 23YDTPJC se tindings underscore the advantages of
approach for diagnosing bearing torque
ts.
mowledgments
paper was supported by Tianjin
mcc and Technology Plan Project under
t 23YDTPJC00290.
erences
Choudhary A, Mian T, Fatima S approach for diagnosing bearing torque
ts.
 nowledgments

s paper was supported by Tianjin

ince and Technology Plan Project under

int 23YDTPJC00290.
 erences

Choudhary A, Mian T, Fatima S.

Convolutional neural netw factorial Acknowledgments

This paper was supported by Tianjin

Science and Technology Plan Project under

Grant 23YDTPJC00290.
 References

[1] Choudhary A, Mian T, Fatima S.

Convolutional neural network based

bearing
-

EXTR PUTE CONTROLL AND THE PRESENT OF THE **Example 19 Science and Engineering Vol. 1 No. 7, 2024**

thermography-based fault diagnosis of under time-varying

induction motor bearings using machine Mechanical Engineering. IEEE Sensors Journal, 21(2): 215-224

1727-1 **and Engineering Vol. 1 No. 7, 2024**

thermography-based fault diagnosis of under time-varying

induction motor bearings using machine Mechanical Engine

learning. IEEE Sensors Journal, 21(2): 215-224

1727-1734, 15 Jan.15 Example 1927-1734, 16 and Engineering Vol. 1 No. 7, 2024

1734 thermography-based fault diagnosis of under time-varying

induction motor bearings using machine Mechanical Engineer

1727-1734, 15 Jan.15, 2021, doi: [13] Wan 10.1109/JSEN.2020.3015868. **Industry Science and Engineering Vol. 1 No. 7, 2024**

thermography-based fault diagnosis of under time-varying

induction motor bearings using machine Mechanical Enginee

learning. IEEE Sensors Journal, 21(2): 215-224

1 astry Science and Engineering Vol. 1 No. 7, 2024

thermography-based fault diagnosis of under time-

induction motor bearings using machine Mechanical

learning. IEEE Sensors Journal, 21(2): 215-224

1727-1734, 15 Jan.15, neural network and knowledge graph. Entropy, 2022, 24(11): 1589.

Enternography-based fault diagnosis of induction motor bearings using machine Mecha

learning. IEEE Sensors Journal, 21(2): 215-22

1727-1734, 15 Jan.15, 2021, doi: [13] Wang

10.1109/JSEN.202 **ustry Science and Engineering Vol. 1 No. 7, 2024**

thermography-based fault diagnosis of under time-vary

induction motor bearings using machine

learning. IEEE Sensors Journal, 21(2): 215-224

1727-1734, 15 Jan.15, 2021 **EXECUTE:**
 **And Solution System Control of the Control of the System and Engineery of the thermography-based fault diagnosis of under time-varying

induction motor bearings using machine Mechanical Engineer

learning. IE** any static fluit diagnosis of thermography-based fault diagnosis of under time-vary
induction motor bearings using machine Mechanical Eng

learning. IEEE Sensors Journal, 21(2): 215-224

10.1109/JSEN.2020.3015868. Li Z, Li

-
- **Industry Science and Engineering Vol. 1 No. 7, 2024**

thermography-based fault diagnosis of under time-varying sp

induction motor bearings using machine

learning. IEEE Sensors Journal, 21(2):

1727-1734, 15 Jan.15, 202 thermography-based tault diagnosis of under tim

induction motor bearings using machine

learning. IEEE Sensors Journal, 21(2): 215-224

1727-1734, 15 Jan.15, 2021, doi: [13] Wang X,

10.1109/JSEN.2020.3015868.

Li Z, Li Y mduction motor bearings using machine

learning. IEEE Sensors Journal, 21(2):

1727-1734, 15 Jan.15, 2021, doi: [13] Wang X, Zhang

10.1109/JSEN.2020.3015868.

[3] Li Z, Li Y, Sun Q, et al. Bearing fault

diagnosis method
- learning. IEEE Sensors Journal, 21(2): 215-224

1727-1734, 15 Jan.15, 2021, doi: [13] Wang X, Zhang H,

10.1109/JSEN.2020.3015868.

Li Z, Li Y, Sun Q, et al. Bearing fault

diagnosis method based on convolutional

Li Z, Li $172/-1734$, 15 Jan.15, 2021, doi: [13] Wang X, Zhang H

10.1109/JSEN.2020.3015868.

Li Z, Li Y, Sun Q, et al. Bearing fault

diagnosis method based on convolutional

machinery. 2022, 24(11): 1589. [14] Sun S, Huang Z, Ya 10.1109/JSEN.2020.3015868. diagnosis method

Li Z, Li Y, Sun Q, et al. Bearing fault

diagnosis method based on convolutional Vibration and Sh

neural network and knowledge graph. 305. DOI: 10.1344

Entropy, 2022, 24(11): L1 Z, L1 Y, Sun Q, et al. Bearing fault

hearings driven b

hearings driven b

neural network and knowledge graph.

Entropy, 2022, 24(11): 1589. [14] Sun S, Huang Z,

Pan R, Lin T, Li C, et al. Research on a

deep learning diagnosis method based on convolutional

neural network and knowledge graph. 305. DOI: 10.134

Entropy, 2022, 24(11): 1589. [14] Sun S, Huang Z

Pan R, Lin T, Li C, et al. Research on a and progress in

deep learning based neural network and knowledge graph.
Entropy, 2022, 24(11): 1589.
Pan R, Lin T, Li C, et al. Research on a
deep learning based weld seam detection
and positioning system for multi size
automotive rims. Optical Precision
Eng Entropy, 2022, 24(11): 1589. [14] Sun S, Huang Z, Yang

[4] Pan R, Lin T, Li C, et al. Research on a

deplearaing based well seam detection

and progress in infra

deplearaing based well seam detection

and positioning sys Pan R, Lin T, Li C, et al. Research on a

deep learning based weld seam detection

and progress in

Engineering, 2023, 31(08): 1174-1187

Engineering, 2023, 31(08): 1174-1187

Engineering, 2023, 31(08): 1174-1187

Liu Z, W deep learning based weld seam detection

and positioning system for multi size Infrared Technolog

automotive rims. Optical Precision

Engineering, 2023, 31(08): 1174-1187 [15] Mian T, Chou

Liu Z, Wang J, Duan L, et al. I and positioning system for multi size

automotive rims. Optical Precision 1140

Engineering, 2023, 31(08): 1174-1187 [15] Mian T

Liu Z, Wang J, Duan L, et al. Infrared Vibration

image combined with CNN based and

diagnos automotive rims. Optical Precision 1140

Engineering, 2023, 31(08): 1174-1187 [15] Mian T, Ch

Liu Z, Wang J, Duan L, et al. Infrared with CNN based multiple fit

diagnosis for rotating machinery. 2017

International Confe Engineering, 2023, 31(08): 1174-1187 [15] Mian T, Chot

[5] Liu Z, Wang J, Duan L, et al. Infrared with CNN based multiple faut

image combined with CNN based multiple faut

diagnosis for rotating machinery. 2017 using dee Liu Z, Wang J, Duan L, et al. Infrared Vibration and in

image combined with CNN based fault

diagnosis for rotating machinery. 2017

International Conference on Sensing, Testing and Evaluati

Diagnostics, Prognostics, and mage combined with CNN based fault

diagnosis for rotating machinery. 2017

International Conference on Sensing, Traing and Evalu

Diagnostics, Prognostics, and Control

(SDPC), Shanghai, China, 2017, 137-142, [16] Jin K,
- diagnosis for rotating machinery. 2017

International Conference on Sensing, Testin

Diagnostics, Prognostics, and Control 296.

(SDPC), Shanghai, China, 2017, 137-142, [16] Jin K,

doi: 10.1109/SDPC.2017.35. of dee

Defin International Conference on Sensing,

Diagnostics, Prognostics, and Control

(SDPC), Shangal, China, 2017, 137-142,

(16) In K, Zhang J, V

doi: 10.1109/SDPC.2017.35.

[6] Lucchi E, Roberti F, Alexandra T.

Definition of a
-
- Diagnostics, Prognostics, and Control

(SDPC), Shanghai, China, 2017, 137-142,

(Io J Jin K, Zhang J, Wang Z

Lucchi E, Roberti F, Alexandra T.

to identify the water streep learning based

Lucchi E. Roberti F, Alexandra T (SDPC), Shanghai, China, 2017, 137-142, [16] Jin K, Zhang J, W

doi: 10.1109/SDPC.2017.35. of deep learning b

Lucchi E, Roberti F, Alexandra T. to identify the wat

Definition of an experimental procedure film-mulched dr doi: 10.1109/SDPC.2017.35. of deep learning based

Lucchi E, Roberti F, Alexandra T.

of deep learning based

white the thermal

white her box method for the thermal

whiteher dimensions with the hot box method for the the Lucch E, Roberti F, Alexandra T.

Definition of an experimental procedure

with the hot box method for the thermal

performance evaluation of inhomogeneous

valls. Energy & Buildings, 2018, 179.

Valls. Energy & Buildings, Definition of an experimental procedure

with the hot box method for the thermal

with the hot box method for the thermal

walls. Energy & Buildings, 2018, 179.

walls. Energy & Buildings, 2018, 179.

[7] Jia Z, Liu Z, Von
- with the hot box method for the thermal water Management, 202

performance evaluation of inhomogeneous [17] Trejo-Chavez O, Cr

walls. Energy & Buildings, 2018, 179.

Ila Z, Liu Z, Vong C M, et al. A rotating methodology f performance evaluation of inhomogeneous [17] Trejo-Chavez C

walls Z, Liu Z, Vong C M, et al. A rotating

ina Z, Liu Z, Vong C M, et al. A rotating

machinery fault diagnosis method based faults in indu

on feature learnin walls. Energy & Buildings, 2018, 179. Resendiz-O

lia Z, Liu Z, Vong C M, et al. A rotating methodolog

machinery fault diagnosis method based faults in

on feature learning of thermol images. ILEY, Du X, Wan F, et al. Rot Jia Z, Liu Z, Vong C M, et al. A rotating methodology

machinery fault diagnosis method based faults in

on feature learning of thermal images.

LEE Access, 2019, 7: 12348-12359. [18] Gana M, Acl

Li Y, Du X, Wan F, et al. machinery fault diagnosis method based
on feature learning of thermal images.
IEEE Access, 2019, 7: 12348-12359.
Li Y, Du X, Wan F, et al. Rotating
machinery fault diagnosis based on
convolutional neural network and infrar on teature learning of thermal mages.

IEEE Access, 2019, 7: 12348-12359.

[18] Gana M, Achour H,

[8] Li Y, Du X, Wan F, et al. Rotating machinery fault diagnosis based on fault detection in induconvolutional neural netwo EEE Access, 2019, 7: 12348-12359.

List T, Du X, Wan F, et al. Rotating

machinery fault diagnosis based on

envarion in induct

convolutional neural network and infrared

theat in induction in induction

theat A, Goyal D, L1 Y, Du X, Wan F, et al. Rotating

machinery fault diagnosis based on

convolutional neural network and infrared

thermal imaging. Chinese Journal of

Measurement Science Science Here-pier

Aeronautics, 2020, 33(02): 427machinery fault diagnosis based on

convolutional neural network and infrared

thermal imaging. Chinese Journal of

Aeronautics, 2020, 33(02): 427-438.

Mehta A, Goyal D, Choudhary A, et al. [19]

Machine learning-based fa convolutional neural network and infrared

thermal imaging. Chinese Journal of Measurement Sec 200, 33(6): 0651

[9] Mehta A, Goyal D, Choudhary A, et al. [19] Goyal D, Choud

Machine learning-based fault diagnosis of Supp thermal maging. Chinese Journal of Measurement Science

Mechana A, Goyal D, Choudhary A, et al. [19] Goyal D, Choudhary A, et al. [19] Goyal D, Choudhary A, et al. [19] Goyal D, Choudhary Surface and thermography. In the s Aeronautics, 2020, 33(02): 42/-438. 2022, 33(6): 0651

Mehta A, Goyal D, Choudhary A, et al. [19] Goyal D, Choud

Machine learning-based fault diagnosis of Support vector

self-aligning infrared thermography. Journal of In Mehta A, Goyal D, Choudhary A, et al. [19] Goyal D, Choudhary A, et al. [19] Goyal D, Choudhare learning-based fault diagnosis of Support vect
self-aligning bearings for rotating contact fault diagnosis of Support vect
mat
-
- Machine learning-based fault diagnosis of
self-aligning bearings for rotating
machinery using infrared thermography.
Mathematical Problems in Engineering,
2021, 2021. [2
Goyal D, Dhami S S, Pabla B S. Non-
contact fault di Solution beach the policing the self-aligning bearings for rotating contact fault diagnoss

machinery using infrared thermography. Journal of Intelligent

2021, 2021.

2021, 2021.

2021, 2021.

2019 Goyal D, Dhami S S, Pab machinery using infrared thermography. Journal of Intelligent

Mathematical Problems in Engineering, 31(5): 1275-1289.

Goyal D, Dhami S S, Pabla B S. Non-

contact fault diagnosis of bearings in temperature distributed

m Mathematical Problems in Engineering, $31(5): 12/5-128$

2021, 2021. [20] Zhou X, ZH

Goyal D, Dhami S S, Pabla B S. Non-

meachine learning environment. IEEE

sensors Journal, 2020. 2019, 130: 289-

Du Y, Tong L, Wei L, et 2021, 2021.

2021, 2021.

2021, 2021.

2021, 2021.

2021, 2021.

2021, Dhami S S, Pabla B S. Non-

2021 Investigation on

temperature distri

machine learning environment. IEEE and outer rings.

2019, 130: 289-29

Du Y, To
-

**CONCORREGIST Academic Education

under time-varying speed. Journal of

Mechanical Engineering, 2023, 59(12):

215-224

Wang X, Zhang H, Zhu J, et al. Fault

diagnosis method for aviation high-speed COMB Academic Education

Mechanical Engineering, 2023, 59(12):

215-224

Wang X, Zhang H, Zhu J, et al. Fault

diagnosis method for aviation high-speed

bearings driven by multi head attention.** 215-224
[13] Wang X, Zhang H, Zhu J, et al. Fault

- **Example 18 Academic Education**
 Conserved Auditor
 Conserved Auditor
 Conserved August 2023, 59(12):

215-224

[13] Wang X, Zhang H, Zhu J, et al. Fault

diagnosis method for aviation high-speed

bearings driven by **Consumer Control Control Consumer Consumer**
 Consumer Consumer Section

Mechanical Engineering, 2023, 59(12):

215-224

Wang X, Zhang H, Zhu J, et al. Fault

diagnosis method for aviation high-speed

bearings driven by **Contributed Education**
 Contributed by Multishing House

under time-varying speed. Journal of

Mechanical Engineering, 2023, 59(12):

215-224

Wang X, Zhang H, Zhu J, et al. Fault

diagnosis method for aviation high-spe **Conserved Control Con Academic Education**
 Configured Education
 Configured Engineering, 2023, 59(12):

215-224

Wang X, Zhang H, Zhu J, et al. Fault

diagnosis method for aviation high-speed

bearings driven by multi head attention.

305. **Publishing House**

under time-varying speed. Journal of

Mechanical Engineering, 2023, 59(12):

215-224

[13] Wang X, Zhang H, Zhu J, et al. Fault

diagnosis method for aviation high-speed

bearings driven by multi head a
- **And Acceleric Education**

under time-varying speed. Journal of

Mechanical Engineering, 2023, 59(12):

215-224

Wang X, Zhang H, Zhu J, et al. Fault

diagnosis method for aviation high-speed

bearings driven by multi head **Consumer Control Control Consumer School Schoo Publishing House**

Infrared Tengineering, 2023, 59(12):

215-224

Wang X, Zhang H, Zhu J, et al. Fault

diagnosis method for aviation high-speed

bearings driven by multi head attention.

Vibration and Shock, 2023,42 (04) 1140 under time-varying speed. Journal of
Mechanical Engineering, 2023, 59(12):
215-224
[13] Wang X, Zhang H, Zhu J, et al. Fault
diagnosis method for aviation high-speed
bearings driven by multi head attention.
Vibration and S
- Mechanical Engineering, 2023, 59(12):
215-224
Wang X, Zhang H, Zhu J, et al. Fault
diagnosis method for aviation high-speed
bearings driven by multi head attention.
Vibration and Shock, 2023,42 (04): 295-
305. DOI: 10.1346 215-224
Wang X, Zhang H, Zhu J, et al. Fault
diagnosis method for aviation high-speed
bearings driven by multi head attention.
Vibration and Shock, 2023,42 (04): 295-
305. DOI: 10.13465/j.cnki.jvs.2023.04.035
Sun S, Huang Wang X, Zhang H, Zhu J, et al. Fault
diagnosis method for aviation high-speed
bearings driven by multi head attention.
Vibration and Shock, 2023,42 (04): 295-
305. DOI: 10.13465/j.cnki.jvs.2023.04.035
Sun S, Huang Z, Yang diagnosis method for aviation high-speed
bearings driven by multi head attention.
Vibration and Shock, 2023,42 (04): 295-
305. DOI: 10.13465/j.cnki.jvs.2023.04.035
Sun S, Huang Z, Yang J. Research status
and progress in in 296. Vibration and Shock, 2023,42 (04): 295-
305. DOI: 10.13465/j.cnki.jvs.2023.04.035
[14] Sun S, Huang Z, Yang J. Research status
and progress in infrared thermal non-
destructive testing image processing.
Infrared Technology 305. DOI: 10.13465/j.cnki.jvs.2023.04.035

Sun S, Huang Z, Yang J. Research status

and progress in infrared thermal non-

destructive testing image processing.

Infrared Technology, 2019,41 (12): 1133-

1140

Mian T, Chou Sun S, Huang Z, Yang J. Research status
and progress in infrared thermal non-
destructive testing image processing.
Infrared Technology, 2019,41 (12): 1133-
1140
Mian T, Choudhary A, Fatima S.
Vibration and infrared thermo and progress in infrared thermal non-
destructive testing image processing.
Infrared Technology, 2019,41 (12): 1133-
1140
Mian T, Choudhary A, Fatima S.
Vibration and infrared thermography
based multiple fault diagnosis of destructive testing image processing.

Infrared Technology, 2019,41 (12): 1133-

1140

Mian T, Choudhary A, Fatima S.

Vibration and infrared thermography

based multiple fault diagnosis of bearing

using deep learning. No Infrared Technology, 2019,41 (12): 1133-

1140

[15] Mian T, Choudhary A, Fatima S.

Vibration and infrared thermography

based multiple fault diagnosis of bearing

using deep learning. Nondestructive

Testing and Evaluati 1140

Mian T, Choudhary A, Fatima S.

Vibration and infrared thermography

based multiple fault diagnosis of bearing

using deep learning. Nondestructive

Testing and Evaluation, 2023, 38(2): 275-

296.

Jin K, Zhang J, Wa Mian T, Choudhary A, Fatima S.
Vibration and infrared thermography
based multiple fault diagnosis of bearing
using deep learning. Nondestructive
Testing and Evaluation, 2023, 38(2): 275-
296.
Jin K, Zhang J, Wang Z, et al.
- Vibration and infrared thermography
based multiple fault diagnosis of bearing
using deep learning. Nondestructive
Testing and Evaluation, 2023, 38(2): 275-
296.
Jin K, Zhang J, Wang Z, et al. Application
of deep learning b based multiple fault diagnosis of bearing
using deep learning. Nondestructive
Testing and Evaluation, 2023, 38(2): 275-
296.
Jin K, Zhang J, Wang Z, et al. Application
of deep learning based on thermal images
to identify t using deep learning. Nondestructive
Testing and Evaluation, 2023, 38(2): 275-
296.
[16] Jin K, Zhang J, Wang Z, et al. Application
of deep learning based on thermal images
to identify the water stress in cotton under
film-
-
- Testing and Evaluation, 2023, 38(2): 2/5-296.

Jin K, Zhang J, Wang Z, et al. Application

of deep learning based on thermal images

to identify the water stress in cotton under

film-mulched drip irrigation. Agricultural
 296.

Jin K, Zhang J, Wang Z, et al. Application

of deep learning based on thermal images

to identify the water stress in cotton under

film-mulched drip irrigation. Agricultural

Water Management, 2024, 299: 108901.

T Jin K, Zhang J, Wang Z, et al. Application
of deep learning based on thermal images
to identify the water stress in cotton under
film-mulched drip irrigation. Agricultural
Water Management, 2024, 299: 108901.
Trejo-Chavez of deep learning based on thermal images
to identify the water stress in cotton under
film-mulched drip irrigation. Agricultural
Water Management, 2024, 299: 108901.
Trejo-Chavez O, Cruz-Albarran I A,
Resendiz-Ochoa E, et to identify the water stress in cotton under
film-mulched drip irrigation. Agricultural
Water Management, 2024, 299: 108901.
Trejo-Chavez O, Cruz-Albarran I A,
Resendiz-Ochoa E, et al. A CNN-based
methodology for identifyi film-mulched drip irrigation. Agricultural
Water Management, 2024, 299: 108901.
[17] Trejo-Chavez O, Cruz-Albarran I A,
Resendiz-Ochoa E, et al. A CNN-based
methodology for identifying mechanical
faults in induction motors Water Management, 2024, 299: 108901.

Trejo-Chavez O, Cruz-Albarran I A,

Resendiz-Ochoa E, et al. A CNN-based

methodology for identifying mechanical

faults in induction motors using

thermography. Machines, 2023, 11(7): Trejo-Chavez O, Cruz-Albarran I A,
Resendiz-Ochoa E, et al. A CNN-based
methodology for identifying mechanical
faults in induction motors using
thermography. Machines, 2023, 11(7): 752.
Gana M, Achour H, Belaid K, et al. N Resendiz-Ochoa E, et al. A CNN-based
methodology for identifying mechanical
faults in induction motors using
thermography. Machines, 2023, 11(7): 752.
Gana M, Achour H, Belaid K, et al. Non-
invasive intelligent monitoring methodology for identifying mechanical
faults in induction motors using
thermography. Machines, 2023, 11(7): 752.
Gana M, Achour H, Belaid K, et al. Non-
invasive intelligent monitoring system for
fault detection in induct faults in induction motors using
thermography. Machines, 2023, 11(7): 752.
[18] Gana M, Achour H, Belaid K, et al. Non-
invasive intelligent monitoring system for
fault detection in induction motor based on
lead-free-piezo thermography. Machines, 2023, 11(7): 752.

Gana M, Achour H, Belaid K, et al. Non-

invasive intelligent monitoring system for

fault detection in induction motor based on

lead-free-piezoelectric sensor using ANN.

Measur Gana M, Achour H, Belaid K, et al. Non-
invasive intelligent monitoring system for
fault detection in induction motor based on
lead-free-piezoelectric sensor using ANN.
Measurement Science and Technology,
2022, 33(6): 0651
- myasive intelligent monitoring system for
fault detection in induction motor based on
lead-free-piezoelectric sensor using ANN.
Measurement Science and Technology,
2022, 33(6): 065105.
Goyal D, Choudhary A, Pabla B S, et a fault detection in induction motor based on
lead-free-piezoelectric sensor using ANN.
Measurement Science and Technology,
2022, 33(6): 065105.
Goyal D, Choudhary A, Pabla B S, et al.
Support vector machines based non-
cont lead-free-piezoelectric sensor using ANN.

Measurement Science and Technology,

2022, 33(6): 065105.

[19] Goyal D, Choudhary A, Pabla B S, et al.

Support vector machines based non-

contact fault diagnosis system for bea Measurement Science and Technology,
2022, 33(6): 065105.
Goyal D, Choudhary A, Pabla B S, et al.
Support vector machines based non-
contact fault diagnosis system for bearings.
Journal of Intelligent Manufacturing, 2019,
3 2022, 33(6): 065105.

Goyal D, Choudhary A, Pabla B S, et al.

Support vector machines based non-

contact fault diagnosis system for bearings.

Journal of Intelligent Manufacturing, 2019,

31(5): 1275-1289.

Zhou X, Zhang
- Goyal D, Choudhary A, Pabla B S, et al.
Support vector machines based non-
contact fault diagnosis system for bearings.
Journal of Intelligent Manufacturing, 2019,
31(5): 1275-1289.
Zhou X, Zhang H, Hao X, et al.
Investiga Support vector machines based non-
contact fault diagnosis system for bearings.
Journal of Intelligent Manufacturing, 2019,
31(5): 1275-1289.
[20] Zhou X, Zhang H, Hao X, et al.
Investigation on thermal behavior and
temper contact fault diagnosis system for bearings.
Journal of Intelligent Manufacturing, 2019,
31(5): 1275-1289.
Zhou X, Zhang H, Hao X, et al.
Investigation on thermal behavior and
temperature distribution of bearing inner
and Journal of Intelligent Manutacturing, 2019, 31(5): 1275-1289.

Zhou X, Zhang H, Hao X, et al.

Investigation on thermal behavior and

temperature distribution of bearing inner

and outer rings. Tribology International,

20 31(5): 12/5-1289.

Zhou X, Zhang H, Hao X, et al.

Investigation on thermal behavior and

temperature distribution of bearing inner

and outer rings. Tribology International,

2019, 130: 289-298.

Ullah I, Khan R U, Yang F
-
-