

Research on the Method of Assessing the Ecological Profit and Loss of Highway Construction in Karst Landform

Yonggang Zeng¹, Zhongxin Hou^{1,*}, Qian Yang², Jun Tang², Jia Zhu³, Jin Huang¹, Jing Wang¹, Shengwang Pan¹, Li Zeng¹, Xuying Zheng¹, Jiali Liu¹

¹School of Architecture and Civil Engineering, Chengdu University, Chengdu, Sichuan, China ²CCCC First Highway Engineering Co., Ltd. Fourth Company, Nanning, Guangxi, China ³China Railway Changjiang Transportation Design Group Co., Ltd, Chongqing, China *Corresponding Author.

Abstract: Karst landform is a special geological landform with unique geomorphological and ecological features, which is highly ecologically sensitive and external disturbances. vulnerable to Nowadays, the process of highway construction in China is developing rapidly, and the social and economic development will cause certain environmental impacts at the same time. Highway construction in karst landform areas will inevitably affect the local ecological environment during the construction and operation of the project. Therefore, it is of great significance to carry out the research on the ecological and environmental profit and loss assessment method of karst terrain highway construction, using the cost-effectiveness method to assess the environment, selecting ecological profit and loss the and environmental profit and loss evaluation indexes, and assigning each profit and loss index a different weight and monetary value. and ultimately judging how much impact is generated in the form of monetization. This method of analysis is of guiding significance for the construction of highways in designated karst landforms.

Keywords: Karst Landform, Highway Construction; Ecological Environment Profit and Loss Assessment; Cost-effectiveness Approach

1. Introduction

In recent years, with the rapid development of China's economy, highway construction has developed rapidly, the highway network system has become more developed, and the process of urbanization has gradually accelerated. However, the highway construction also breaks the balance of the original ecological environment in the highway construction area, which will have an impact on the ecological environment of the road area during the construction and operation of the highway project[1]. For example, it causes soil and water loss, vegetation reduction, rock desertification and other ecological damage in the local environment[2,3]. Moreover, because of the unique ecological environment structure of karst landform, its ecological fragility is high and it is easy to be affected by external interference[4]. Therefore, the damage to ecological environment caused by road construction in karst areas is more serious than that in other regions. Karst landform is an indispensable part of the earth's biosphere. Therefore, it is necessary to carry out highway construction on the basis of protecting the ecological environment, make different planning design and formulate and environmental protection schemes according to the actual ecological environment situation of the highway construction area, and build "ecological highway" to achieve a win-win situation of infrastructure construction and ecological environmental protection[5].

order to realize the environmental In protection in the process of highway construction, it is necessary to evaluate the ecological environment profit and loss of the construction area, analyze the ecological service function profit and loss caused by highway construction, use the economic evaluation method and establish я mathematical model, and standardize the data of ecological environment profit and loss through currency[6]. In this paper, the basic principles of cost benefit and ecological environment value evaluation method are

comprehensively applied to convert ecological environment profit and loss into social and economic value, which can be expressed in monetary terms. This analysis method is widely used in the field of environmental economics, with high scientific and accurate, analysis of ecological through the environmental profit and loss, to achieve the purpose of providing theoretical basis and guiding significance for the construction of karst landform road and ecological environmental protection.

Industry Science and Engineering Vol. 1 No. 7, 2024

Method

Combined with a large number of current literature, it is found that the ecological profit and loss assessment methods for highway construction are most commonly used in environmental economics, and three types of ecological economic damage and benefits are most used in environmental economics: direct valuation market approach. revealed preference stated preference approach. method^[7]. The meanings and comparison of the three methods are shown in Table 1 and Table 2.

2. Road Ecological Profit and Loss Analysis Table 1. Meaning of Economic Assessment Method for Ecological Environmental Profit and Loss

Table 1. Wearing of Economic Assessment Wethou for Ecological Environmental Front and Eoss							
	Method ty	pe	Implication				
Direct market			Environmental quality is regarded as a production factor, and its impact on				
	valuation app	roach	environmental quality	change is evaluated ba	sed on the change in productivity[7].		
	Revealed	ł	Study people's participation in the market, people's spending and benefits in				
	nreferenc	u ve	environmentally relev	ant markets, predict peo	ople's environmental preferences, and		
	approach	h	assess the economic v	alue of environmental of	change. The alternative market prices		
	approact	.1	are used to evaluate environmental products without market prices[8].				
			A survey based met	hod of assessing the ser	vice value of non-market goods, in		
	Stated prefer	rence	which the value of the	ne relevant goods is gui	ded by a questionnaire, the result of		
	method		which depends on t	he characteristics of the	goods or services described in the		
			establis	ment of the market and	the survey scheme[9].		
,	Table 2. C	ompa	rison of Ecological E	vironment Profit and	Loss Value Assessment Methods		
	Name	Aŗ	oplication situation	advantage	shortcoming		
	Direct	Ca	usality is clear, and	Easy to understand, intuitive, easy to calculate and adjust	It is difficult to analyse the main		
	market	envi	ronmental gains and		causes of profit and loss and to		
valuation	valuation	losse	s are expressed in the		assess the causal relationship		
	approach	f	form of currency.	eurourate una aujust.	ussess the eausar relationship.		
	Revealed Traffic noise; Nature preference reserves, forest parks; approach Railway, road planning, etc		The value of ecological environment can be calculated indirectly by substitutable products.	Alternative products can not fully reflect the value of ecological environment, but can only reflect the comprehensive factors or partial characteristics[10].			
	Stated preference method	Leisu pro wit biodi	tection of resources hout market prices, versity, impact on life and health etc.	Can fully evaluate the value of an item's use.	Have a deviation; Inconsistent willingness to pay and receive compensation; It is difficult to summarize the sampling results[11].		

3. The Principle of Ecological Assessment Index System Selection

Ecological assessment index is the evaluable attribute of ecological environment entity. Ecological assessment index system refers to a whole composed of many different ecological indicators, facing different research objects, according to the purpose of research, to obtain specific research objects in all aspects. In the ecological assessment index system, the selection of indicators should follow certain principles, be comprehensive and representative, and the investigation method should be simple. Each indicator should also be measurable and highly independent, avoid the overlap of relevant information among indicators, and try not to have causality between indicators[12]. The implication are shown in Table 3.

Academic Education Publishing House

Industry Science and Engineering Vol. 1 No. 7, 2024

Table 5. Selection Principle of Ecological Assessment Index System					
Selection principle	Implication				
	It must be built on the basis of scientific research, must conform to the theoretical				
	basis, and can reflect the characteristics of the ecological environment in the road				
Saiantifia principla	from the time and space scale. The collection, calculation and statistical methods				
Scientific principle	of indicators should be reasonable and implemented in accordance with the				
	requirements of national and industry standards, so as to improve the reliability,				
	authenticity and objectivity of the evaluation system[13].				
	There are many factors involved in the ecological environment profit and loss				
Representativeness	assessment, so it is not necessary and no possible to select all the factors in the				
nrinciple	actual evaluation. It is only necessary to consider whether the selected indicators				
principic	can represent the entire evaluation process and whether they can reflect the status				
	quo and changes of the local ecological environment[14].				
	Different regions have different ecological environments, forming a complex				
	ecosystem, which is interrelated. Therefore, before establishing a complete				
	evaluation system, it is necessary to clarify the relationship between various				
Systematic principle	evaluation indicators and determine the corresponding level according to the				
	correlation theory. Indicators should be closely connected. When selecting				
	indicators, it is necessary to consider not only the representative significance of a				
	single indicator, but also the synergistic effect among them[15].				
	The investigation and calculation of indicators should be quantified, so as to				
Quantitative	make them more consistent and accurate with the evaluation standards, and				
principle	finally obtain reliable and objective evaluation results, reduce human interference				
principie	and operational errors in the evaluation process, and ensure the objectivity and				
	scientificity of indicator data[16].				
	The index should be stable, not highly sensitive to other variables, and it will				
Stability principle	only change slightly or not when the associated variable changes. Otherwise, the				
Stability principle	value of some indicators will be difficult to calculate and determine, which will				
	affect the accuracy of the research [17].				

Table 3. Selection Principle of Ecological Assessment Index System

4. Ecological Environment Economic Profit and Loss Analysis Evaluation Index

Cost-benefit analysis is the most commonly used method of eco-environmental economic profit and loss analysis, which can be used to identify and measure the overall benefit of a highway construction project. Project benefit is the value added of the output of goods and services of the project. including environmental goods and services, that is, the sales economic benefit and environmental improvement benefit of the production[18]. In the ecological environment economic profit and loss analysis, it is necessary to find out the main environmental impact problems of the project and carry out economic profit and loss analysis.

4.1 Economic Net Present Value (ENPV)

Calculate the actual revenue value of the project taking into account the time value of funds. It is the ratio of the economic net present value to the total investment present value, that is, the economic net present value of the unit investment present value. The calculation formula is as follows:

$$ENPV = \sum_{i=1}^{n} \frac{B_i - C_i}{(1+r)^i}$$
(1)

Bi, Ci—Total environmental protection benefits and total investment costs incurred in i-th year.

r—Social discount rate (%).

When ENPV>0, it indicates that the environmental investment in the project has paid off.

4.2 Economic Net Present Value Rate (ENPVR)

When there are multiple environmental projects to choose from, choose the project with a larger ENPV value:

$$ENPVR = \frac{ENPV}{Ip}$$
(2)

ENPV—net present value of economic benefit. Ip—net present value of investment.

4.3 Benefit-cost Ratio

$$E = \frac{B}{C}$$
(3)

PVB - benefit present value.

PVC - cost present value.

The higher the calculated value E, the better the return on investment. The basic rule is E>1[19].

5. Ecological Environment Profit and Loss Assessment Indicators

This paper obtains the research and evaluation methods of ecological environmental profit and loss through literature and field investigation. The obtained ecological environmental profit and loss evaluation index

Industry Science and Engineering Vol. 1 No. 7, 2024

is screened to get its weight, and the ecological environmental profit and loss of highway construction is evaluated to determine the application of a better evaluation system. At present, the ecological environment profit and evaluation methods of loss highway include construction generally grey comprehensive evaluation method, analytic hierarchy proces, Data Envelopment Analysis, Artificial neural network evaluation method, fuzzy comprehensive evaluation[20]. The advantages and disadvantages of each method are compared in the following Table 4:

Table 4. Comparison of Advantages and Disadvantages of Evaluation Methods						
Method class	Method name	Advantage	Shortcoming			
Theory of Grey system[21]	Grey association analysis method	The calculation is simple and the sample size is small.	Lack of objectivity.			
Evaluation methods of operations	Analytic hierarchy proces	Qualitative and quantitative combination, accurate and reliable.	Difficult to provide new solutions.			
research[21]	Data Envelopment Analysis	More objective weight design.	Only relative efficiency can be assessed.			
Intelligent assessment	Artificial neural network evaluation method	Can handle nonlinear relations.	Requires training to run.			
Fuzzy comprehensive evaluation	Fuzzy comprehensive evaluation	Qualitative and quantitative combination, provide a large amount of information, has a strong ability to expand.	The calculation is complicated and the determination of index weight vector is subjective.			

Table 4. Comparison of Advantages and Disadvantages of Evaluation Methods

According to existing studies, the impact of highway construction on the natural environment can include natural resources and environmental protection, as well as two time-scales of short-term impact and long-term Therefore, impact. the ecological environmental profit and loss of highway construction is divided into ecological profit and environmental profit and loss, a specific evaluation index system is formed[22], and its weight index is determined.

5.1 Ecological Impact Profit and Loss Assessment Indicators

The short-term impact of highway construction on ecology mainly refers to the destruction of vegetation, rocky desertification, soil and water loss, etc., caused by road construction, while the long-term impact leads to the damage of animal and plant habitats, affects the normal life activities of organisms, and changes the normal law of biological community succession, resulting in serious impacts on relevant ecosystems, Ecological profit and loss evaluation indicators are shown in the following Table 5.

5.2 Environmental Impact Profit and Loss Assessment Indicators

The short-term impact of highway engineering on the environment mainly includes air pollution, water pollution, noise pollution and garbage pollution caused by road construction. Long-term impacts on the environment include air pollution due to vehicle exhaust emissions, soil pollution, noise pollution from vehicle operation, water pollution caused by discharged waste, and some solid waste pollution. Environmental profit and loss evaluation indicators are shown in the following Table 6.

	-		
Table 5. Ecologica	I Profit and Loss	Evaluation	Index System

Time	Primary index	Indicator meaning
Short torm	Ecological	The occupation of land leads to the change of soil utilization type in the construction
Short-term	destruction	area, resulting in economic losses and ecological environment destruction in the

Industry Science and Engineering Vol. 1 No. 7, 2024

		region along the line.
	Soil and water	It causes disturbance to the surface and changes the water system structure in a certain
	loss	range, which is easy to cause soil and water loss.
	landform	The highway construction leads to the change of land use along the road, and then
	pattern	causes the change of landform pattern in the road area.
	Service	Land cover leads to changes in land use types, resulting in changes in land cover of
	function	different ecosystem types.
	Pood dooth	Road traffic kills a lot of wildlife. With the rapid progress of the transportation
	Road death	industry, the incidence of traffic accidents is gradually increasing.
		Highway construction divides the places where animals live into several small areas,
Longterm	Blocking	reducing the range of animal activities, affecting the growth and reproduction of
Long-term	effect	animals, reducing the quality of the population and reducing the communication
		between the populations, resulting in a more far-reaching impact on biodiversity.
	Species	Animals or vehicles can carry alien species into local ecosystems, and new roads can
	invasion	provide a mobile invasive route for alien species [23].
		The decrease of vegetation coverage will affect the original development trend of the
	Ecological	biological community. In addition, the construction of highways will cause the
	process	originally connected land and water to be divided into isolated plates, which will have
		a negative impact on the geological structure and water system structure [24].

	Table 6. Environmental Profit and Loss Evaluation Index System					
Time	Primary index	Indicator meaning				
	Air pollution	Air quality can be affected by factors such as construction dust, vehicle exhaust, and smoke generated when asphalt is laid.				
Short-term	Water pollution	Water environment is affected by pollution caused by building materials stacking, earthwork excavation and filling, drilling and grouting, concrete pouring, domestic sewage in living areas, and oil pollution from construction machinery and vehicles [25].				
	Noise pollution	Including the noise emitted by various types of construction machinery and vehicle transportation noise [23].				
	Garbage pollution	Building materials stacking, construction waste, engineering waste, domestic waste, will cause land hardening, soil pollution.				
	Air pollution	There are a variety of pollutants in vehicle exhaust, which can not only directly harm the normal life activities of humans and animals and plants, but also change the type of climate when the production reaches a certain level, thus affecting the natural ecology of the whole world. Air pollution in the road area focuses on the impact of vehicle exhaust on the environment [26].				
	Water pollution	Pollutants released by construction machinery and vehicles (such as heavy metals, microplastics, etc.) and pollutants generated by various construction measures and building materials will enter the road water body or penetrate into the groundwater along with the road rainwater runoff. These pollutants continue to accumulate, and when they exceed a certain range, they will threaten the safety of water quality.				
Long-term	Noise pollution	It mainly refers to the combustion noise, intake and exhaust noise, fan rotation noise, mechanical noise, tire noise, body noise, etc., and also includes the noise generated by construction machinery work.				
	Soil pollution	The main road of the highway and its surrounding areas will accumulate more heavy metal particles, forming an area with a width of nearly 50-100 meters on both sides of the road, and the concentration of heavy metals in this area shows a gradual decline from inside to outside [24].				
	Waste pollution	Waste pollution includes abandoned machinery, construction waste, household garbage, scattered earth, cement and so on. Some of these wastes have strong resistance to heat, wear and degradation. It exists in the open air for a long time, and it will pollute the local soil and water source after being soaked by rain.				

5.3 Determine the Weight of Ecological Environment Profit and Loss Impact Indicators

5.3.1 Weight determination based on analytic hierarchy process

The weights of this paper are determined according to the scores of several experts, and the importance judgments of experts on indicator weights are converted into weight representations. The value of indicator weights is shown in Table 7 (This weight indicator is

referenced from the results achieved in the early work phase of the project—Ecological environmental profit and loss analysis of western highway engineering and the evaluation of road ecological engineering effect).

-	-		
Table 7. Ecological Environment	Profit and Loss E	Evaluation Index S	ystem Factor Weight Table

Туре	Index	Weight	Туре	Index	Weight
	Ecological destruction	0.257		Air pollution (short term)	0.038
	Soil and water loss	0.189		Water pollution (short term)	0.059
Easta sizat anofit	landform pattern	0.127	Environmental	Noise pollution (short term)	0.041
ecological profit	Service function	0.090	profit and loss	Air pollution (long term)	0.110
and loss	Road death	0.090	assessment	Water pollution (long term)	0.139
evaluation muex	Blocking effect	0.095	indicators	Noise pollution (long term)	0.162
	Species invasion	0.095		Soil pollution (long term)	0.175
	Ecological process	0.058		Waste pollution (long term)	0.214

5.3.2 Evaluation model construction

The function of weight is to reflect the importance and relevance of different evaluation indicators, and also to reflect the status and function of evaluation indicators in the entire evaluation system and the degree of influence on the overall index [26]. According to the above indicators and their weights, it can be seen that among the indicators of ecological profit and loss assessment, ecological destruction, soil and water loss and landform pattern have a bigger weight, while among the indicators of environmental profit and loss assessment, waste pollution, soil pollution, noise pollution, water pollution and air pollution have a bigger weight. The index weights determined by analytic hierarchy process have a smaller value, and the weights with a smaller value have a smaller impact on the ecological environment. In the evaluation index system, the score of the impact degree of indicators on the ecological environment is determined according to the actual investigation results, empirical analysis and expert evaluation [27]. The score is based on the 10-point system, and the grade scores of "9, 7, 5, 3 and 1" respectively represent high impact, large impact, average impact and small impact. The impact is small to carry out quantitative assignment of qualitative indicators. Combined with the existing research conclusions, and then according to the characteristics of karst landform highway, make a comprehensive evaluation. The evaluation steps are as follows:

(1) Establish the hierarchy of evaluation indicators

The indicators are divided into two categories: major indicators and single indicators;

Large scale index: F_i is a Large scale index;

Single index: F_{ij} is the score of the j-th single index within the i-th Large scale index.

(2) The method of determining the scores of indicators at all levels

I. The average value of individual indicators can be obtained according to the type of indicators and the specific evaluation questionnaire;

II. The score of Large scale index is a summary of Single indexs.

$$\mathbf{F}_i = \sum W_{ij} F_{ij} \tag{4}$$

In the formula: W_{ij} is the weight of the j-th single index within the i-th Large scale index; F_{ij} is the score of the j-th Large scale index within the i-th Large scale index.

(3) Calculation of comprehensive valuation

The comprehensive evaluation value is a further synthesis of the evaluation value of the major indexes, and its size reflects the degree of impact on the ecological environment of karst landform. The calculation formula is as follows:

$$\mathbf{A} = \sum_{i=1}^{n} W_i F_i \tag{5}$$

In the formula:A— the impact of karst road area engineering ecological environment quality; n—number of evaluation indicators; WiFi—The value of an evaluation score under an evaluation index; Wi—Shows the weight of the i-th Large scale index; Fi—the evaluation score of the i-th Large scale index.

In order to combine the characteristics of karst highway region, this paper mainly analyzes the ecological damage caused by highway construction, uses the economic evaluation method of ecological environment impact to evaluate the ecological environment profit and loss, incorporate its results into the national economic evaluation, in order to realize the sustainable development of highway construction.

6. Conclusion

At present, the research on ecological environment profit and loss assessment methods for the construction of karst landform highway has achieved certain results. Appropriate economic assessment methods for ecological environment profit and loss are selected to determine the corresponding ecological environment economic profit and loss assessment indicators and ecological environment profit and loss assessment indicators. After standardizing the index data and assigning weights, the evaluation model is constructed to help judge the ecological environment quality of karst road construction area. Then. through the method of environmental economics, the profit and loss caused by highway construction on the ecological environment of the road area is presented in the form of currency, and the comprehensive impact of the highway project on the ecology, society and economy is assessed. In terms of evaluation methods, this paper has formed a relatively complete evaluation system, including the comparison of common ecological profit and loss evaluation methods, the selection principle of ecological evaluation index system, the evaluation index of ecological environment economic profit and loss analysis, and the evaluation index of ecological environment profit and loss. In practical application, these assessment methods have been widely applied and verified, providing important technical support for the ecological environment protection of highway construction in karst and playing guiding areas, а and complementary role in the assessment methods of ecological environment profit and loss of road areas in karst areas.

However, there are still some problems and challenges. First of all, the geomorphology and ecological environment of karst area are very complicated, which brings great difficulties to the monitoring of assessment indicators in ecological environmental profit and loss assessment. Secondly, the current ecological environment profit and loss assessment method is not perfect, different methods have different advantages and disadvantages, still need to be further perfected and improved. In terms of ecological environmental damage assessment, it is necessary to consider various ecological environmental factors more comprehensively and select more representative assessment indicators to assess the ecological environmental loss and profit of highway construction more accurately.

Acknowledgments

This research was supported by the Chongqing Transportation Bureau Science and Technology Project (No. CQJT2022ZC07); Open Fund Project of Sichuan Urban Solid Waste and Building Energy Materials Utilization Conversion and Technology Engineering Research Center (GF2022ZC011); Funding Project of Guangxi Key Laboratory of Water Engineering Materials and Structures (Project No. GXHRI-WEMS-2022-05); Experimental Teaching Reform Project of Chengdu University in 2022- Research on Experimental Teaching Reform of "Water Treatment Experiment and Simulation Technology" Based on OBE Professional Certification (No. cdsyjg2022001); Chengdu University "Specialized Innovation and Entrepreneurship Integration" Innovation and Entrepreneurship Demonstration Course Construction Project (No. 28).

References

- Liu Huixing, Zhao Kang. On Environmental Protection in Highway Construction in Karst Areas. Highway Transportation Technology (Applied Technology Edition), 2013, 9(08):268-270.
- [2] Chong Guoshuang, Hai Yue, Zheng Hua; Xu Wei-hua; Ouyang Zhi-yun. Current Situation and Measures of Karst Rocky Desertification Control in Southwest China. Journal of Yangtze River Scientific Research Institute, 2021, 38(11):38-43.
- [3] Han Huiqing, Chen Mengling, Ma Geng, Shi Linfeng, Bai Yumei. A Comparative Study on the Ecological Land and Ecosystem Service Value along the Rural Road in Different Karst Towns. Journal of Shangqiu Normal University, 2020, 36(09):46-49.
- [4] Shi Shana, Li Xiaoqing, Hu Baoqing. Multi functional Theory and Research Prospects in Karst Areas. Economic Geography, 2022, 42(02):74-83.
- [5] Hu Songchang. Analysis of Environmental Issues Generated during Highway

Construction. Environmental Engineering, 2023, 41(01):274.

- [6] Yang Yangang, Wang Weigang, Guo Xiaoze, Zhao Jing, Shao Shegang. Empirical Study on Ecological Profit and Loss Assessment of Highway Construction Projects. Highway Transportation Technology (Applied Technology Edition), 2019. 15(03):284-286.
- [7] Wei bin, Zhu Lingyun, Yu Ling. Overview of Evaluation Method of Ecological Environment Value. Appraisal Journal of China, 2021, (11):24-27.
- [8] Zhou Rongji, Pi Xiuping, Wu Sibin, Xiao Li. Environmental Valuation of Externalities Agricultural from Perspective of Supply Side-Based on Empirical Study on Storing Grain in Fields in Hunan Province. Jiangsu Agricultural Sciences, 2018, 46(11):306-310.
- [9] Fan Zijuan, Ao Changlin, Mao Biqi, Chen Hong-guang, Wang Xu-dong. Comparing the Value of Ecological Protection in Sanjiang Plain Wetland, Northeast China Based on the Stated Preference Method. Chinese Journal of Applied Ecology, 2017, 28(02):500-508.
- [10]Li Hongjun, Zhigang, Zhang Wang Wanshun. Research Progress on Ecological Environment Profit and Loss Methods in Highway Engineering. Exploration West-China Engineering, 2010, 22(09):235-237+240.
- [11]Xiang Jing-chang, Guangdong Provincial Academy of Environmental Science. Research Progress on Marine Ecosystem Services and Its Value Assessment. Guangzhou Chemical Industry, 2015, 43(12):34-35+66.
- [12]Yuan Junbin, Zhang Zheng, Li Yang, Wen Qingchun, Jiang Yongwei, Wang Xingmeng. Analysis of the Current Situation of the Construction of the Ecological Environment Evaluation Index System in China. Environmental Protection and Circular Economy, 2023, 43(10):56-59.
- [13]Liu Liyuan, Zheng Xiangqun, Zhang Chunxue, Yang Bo, Chen Peizhen, Xu Yan. Construction of the Evaluation Index System for Soil Environment of Paddy Fields with Organic Fertilizer

Supplementation. Journal of Agricultural Resources and Environment, 2022, 39(01):129-138.

- [14]Zhu Xiang, Zhu Qun. Researches on Assessment of Ecosystem Service Function of Baima Lake. Environmental Science and Management, 2016, 41(09):153-157.
- [15]Yang Gang. Study on the Efficiency of Forestry Ecological Economy in China. Pioneering with Science & Technology Monthly, 2020, 33(08):61-66.
- [16]Yi Yujun, Ye Jingxu, Ding Hang, Yin Senlu. Research Progress and Prospect in China of Aquatic Ecosystem Assessment Methods. Journal of Lake Sciences, 1-14[2024-04-02].
- [17]Si Mawenhui, Hu Xiaofeng, Shen Zhanfeng, Yang Yingxue, Yuan Fang, Gao Junhai. Construction of Evaluation Index System for Water Ecological Security in Daqing River Basin. Water & Wastewater Engineering, 2021, 57(01):90-95+102.
- [18]Man Kun, Dai Shuanping. How Environmental Regulations Affect Labor Mobility: An Analysis Based on the Dual Perspective of Population Inflows and Outflows Across Cities. Quantitative & Technical Economics, 1-22[2024-04-02].
- [19]Ye Runcheng. Re-evaluation of Avionics Engineering Projects from the Perspective of "Dual Carbon". Zhejiang Hydrotechnics, 2023, 51(02):38-41.
- [20]Yin Lu. Study and Evaluation on the Environmental Benefits of Highway Construction Project. Environment and sustainability, 2017, 42(03):71-73.
- [21]Gao Dalin. Study and Evaluation on the Environmental Benefits of Highway Construction Project. Chongqing Jiaotong University, 2016.
- [22]Cheng Kun. Ecological Impact of Highway Construction and Ecological Highway Construction. Modern Transportation and Road and Bridge Construction, 2024, 3(8): 154-156.
- [23]Zeng Cheng, Analysis of Environmental Management and Measures in the Construction Stage of Civil Engineering and Architecture. Property, 2019, (24):72.
- [24]R. T. T Forman, Richard T. T. Road Ecology Science and Solutions. Higher Education Press, 2008.
- [25]Zheng Tingting. Analysis of the Impact of

Industry Science and Engineering Vol. 1 No. 7, 2024

Highway Construction on Environmental Protection and Environmental Protection Measures. Transportation Technology and Management, 2023(7):0175-0177.

[26]Wu Na. Exploring the Path of Air Pollution Control in Urban Environmental Management. Leather Manufacture and Environmental Technology, 2022, Academic Education Publishing House

3(16):131-133.

[27]Zhao Yu, Zhang Niuniu. Western Region under the Perspective of Ecological Economic System Exploring the Quality of Ecological Civilization Construction. Journal of Lanzhou University of Finance and Economics, 1-25[2024-04-02].