

mic Society and Humanities Vol. 1 No. 10, 2024
 Based on Monte Carlo simulation optimization research in
 Based on Monte Carlo simulation optimization research in
 Comporate production decision-making

Liu Dengsheng, *d Humanities Vol. 1 No. 10, 2024*
 corporate Carlo simulation optimization research in
 corporate production decision-making
 engsheng, Qin Sihao, Li Xiaomin ,Tang Xiaoqing,Wang Chunli
 Guilin Tourism University, G iety and Humanities Vol. 1 No. 10, 2024
 Liu Dengsheng, Qin Sihao, Li Xiaomin ,Tang Xiaoqing, Wang Chunli

Liu Dengsheng, Qin Sihao, Li Xiaomin ,Tang Xiaoqing,Wang Chunli
 Cuilin Tourism University, Guilin, Guangxi, Chi FR Academic Education
 **Guilin Tourism University, Guilin Tourism University, Guilin Tourism University, Guilin, Guangxi, China

Pheng, Qin Sihao, Li Xiaomin ,Tang Xiaoqing,Wang Chunli
** *Guilin Tourism University, Guilin*

Economic Society and Humanities Vol. 1 No. 10, 2024
 Abstraction Monte Carlo simulation optimization recorporate production decision-making

Liu Dengsheng, Qin Sihao, Li Xiaomin ,Tang Xiaoqing,Wang C
 Guilin Tourism U **Economic Society and Humanities Vol. 1 No. 10, 2024**
 Rased on Monte Carlo simulation optimization
 Corporate production decision-makin

Liu Dengsheng, Qin Sihao, Li Xiaomin ,Tang Xiaoqing, Wan
 Guilin Tourism Univer **Economic Society and Humanities Vol. 1 No. 10, 2024**
 programming Combind Carlo Simulation optimization recorporate production decision-making

Liu Dengsheng, Qin Sihao, Li Xiaomin ,Tang Xiaoqing,Wang C
 Guilin Tourism **Based on Monte Carlo simulation optimization rescuestion**

Corporate production decision-making

Liu Dengsheng, Qin Sihao, Li Xiaomin ,Tang Xiaoqing,Wang Chu
 Guilin Tourism University, Guilin, Guangxi, China

Abstract: **Production decision-makin**
 Python Corporate production decision-makin

Liu Dengsheng, Qin Sihao, Li Xiaomin ,Tang Xiaoqing,Wan
 Guilin Tourism University, Guilin, Guangxi, China

Abstract: In this paper, we first sel **corporate production decision-making**

Liu Dengsheng, Qin Sihao, Li Xiaomin ,Tang Xiaoqing,Wang
 Guilin Tourism University, Guilin, Guangxi, China

Abstract: In this paper, we first select

relevant data, comprehensivel **Composition** Composition Control Composition-Thanking

Liu Dengsheng, Qin Sihao, Li Xiaomin ,Tang Xiaoqing, Wang
 Guilin Tourism University, Guilin, Guangxi, China

Abstract: In this paper, we first select

redevant dat **Liu Dengsheng, Qin Sihao, Li Xiaomin ,Tang Xiaoqing, Wang Chu** *Guilin Tourism University, Guilin, Guangxi, China*
 Abstract: In this paper, we first select accurate assessment of the sup-
 relevant data, comprehensive Liu Dengsheng, Qin Sihao, Li Xiaomin ,Tang Xiaoqing, Wang Chun
 Guilin Tourism University, Guilin, Guangxi, China
 Abstract: In this paper, we first select accurate assessment of the supplement of the supplement of **Example 10** Engymeny, Q and Sinal C. L.A Adomin , tang Xiaoqing, Wang Chu
 Guilin Tourism University, Guilin, Guangxi, China
 relevant data, comprehensively use dynamic It further discusses how
 programming combined production in case 1 is the most reasonable, Abstract: In this paper, we first select
relevant data, comprehensively use dynamic
prediction of the superal experiment of the superal experaming combined with Monte Carlo
inspection, assembly, disman
simulation to establ Abstract: In this paper, we first select accurate assessment of the surelevant data, comprehensively use dynamic life further discusses how programming combined with Monte Carlo inspection, assembly, dismainimulation to es **Exercise the comprehensively use dynamic control in the production and a comprenent distasses a proportion of each situation to establish a model, and use launch strategies in Python programming to realize and visualize r Prevanti data, comprenensively use dynamic**
 decision-
 decision-
 decision-
 definition-
 definition-
 definition-
 definition-
 definition, we use the entropy weight
 definition, we use the entropy weig be fluiding the simulation of establish a model, and use launch strategies in the pricharmon or establish and use all and the entire calculation process. For the metrics rates under a given defect of each situation, we u **to achieve the best production management Example 12 entine entine contests. For the metrics** and improve proof **each situation, we use the entropy weight** T **EXECTE CONCITE:** THE **ENDENDIFFERT STECTS** THE **ENDED**
 EN enterprise. mancators of unterent untensions. Finally, it

is concluded that the cost price required for it, as well as the four sproduction in case 1 is the most reasonable,

finished product testit

the defective rate is the lowest, **Production in case 1 is the most readured und the cost price required for the defective rate is the howest, and the dismantiling [6], and wasted production in case 1 is the most reasonable, the defective rate is the buyes Business Production In case 1 is the most reasonable,** the defective rate is the lowest, and the disman comprehensive score is the highest. It also product provides a reference for the production solve the decision-making provides a reference for the production

decision-making of the enterprise, which can

decision-making of the enterprise, which can

to achieve the best production management

to achieve the best production management

ef

1.Introduction

be flexibly adjusted according to the situation

fo achieve the best production management

effect, reduce the production loss of the the is in omissed detec

enterprise,

enterprise,

enterprise,

enterprise,

enterprise, to achieve the best production management

effect, reduce the production loss of the there is no missed detection and

enterprise. and bring greater benefits to the (2) The production process is stenterprise.

(3) The deci effect, reduce the production loss of the there is no missed deter
enterprise, and bring greater benefits to the (2) The production pro
are no influencing fact
(3) The decision at each
experimenting; Entropy Weight Law; re enterprise, and bring greater benefits to the (2) The production process is

are no influencing factors that
 Keyword: Monte Carlo Simulation; Dynamic (3) The decision at each stage
 Rusiness Production Decisions (3) T enterprise. The are no influencing factors that
 Exerce in the Carlo Simulation; Dynamic
 Exerce in the continuity
 Programming; Entropy Weight Law; teturned product is complete
 Business Production Decisions
 Ele (3) The decision at each
 Programming; Entropy Weight Law;
 Programming; Entropy Weight Law;
 Electronics Complementation
 Electronics companies face complex production
 Electronics companies face complex producti Keyword: Monte Carlo Simulation; Dynamic to the cost function; (4

Programming; Entropy Weight Law; returned product is com

Business Production Decisions the results of previous dee

xeternal influence.

I.Introduction

E **Programming;** Entropy Weight Law; returned product is completely
 Business Production Decisions the results of previous decisions
 Electronics companies face complex production
 Electronics companies face complex pro Business Production Decisions the results of previculation
 Electronics companies face complex production
 Contained Constanting challenges, especially in the
 Constanting density control of spare parts and the insp 1.Introduction
 Electronics companies face complex production
 2. Decision Analysis and Recision-making challenges, especially in the
 Monte Carlo Simulation
 quality control of spare parts and the inspection and 1. Introduction
 Electronics companies face complex production
 Electronics companies face complex production
 Carlo Simulation
 Carlo Simulation
 Carlo Simulation
 Carlo Simulation
 Carlo Simulation
 C Electronics companies face complex production

decision-making challenges, especially in the

Monte Carlo Simulat

quality control of spare parts and the inspection

of finished products. With the intensification of

marke decision-making challenges, especially in the **Monte Carlo Simulation**

quality control of spare parts and the inspection

of finished products. With the intensification of

market competition and the continuous

memoremen quality control of spare parts and the inspection
of finished products. With the intensification of
market competition and the continuous
improvement of consumers' requirements for For the decision-making
product quality, of finished products. With the intensification of market competition and the continuous 22.1 Research Ideas improvement of consumers' requirements for For the decision-making product quality, how to efficiently and of the market competition and the continuous 2.1 Research Ideas
improvement of consumers' requirements for For the decision-making p
product quality, how to efficiently and of the production pro
accurately control the defective r mprovement of consumers' requirements for For the decision-making proble

product quality, how to efficiently and of the production process,

accurately control the defective rate has become

the key to breakthrough. In th

Accudentic Education
 accuration optimization research in
 accuration-making
 in , Tang Xiaoqing, Wang Chunli
 Guilin, Guangxi, China

accurate assessment of the supplier's rejects rate.

It further discusses h **Example 19 Academic Education**
 Example 10 Academic Education
 ion optimization research in
 ion decision-making
 ion
 Guilin, Guangxi, China

accurate assessment of the supplier's rejects rate.

It further di 24
 ion optimization research in
 ion decision-making
 ion decision-making
 ion figure and market
 Guilin, Guangxi, China

accurate assessment of the supplier's rejects rate.

It further discusses how to optim **COLORET CONCITED:**
 **COLORET ATTES INTERENT CONCITED STATE STATE STATE STATE STATE STATE STATE STATE ACTION SCULPT STATE ACTION accurate assessment of the supplier's rejects rate.

It further discusses how to optimize the ion optimization research in**
 in ,Tang Xiaoqing,Wang Chunli
 Guilin, Guangxi, China

accurate assessment of the supplier's rejects rate.

It further discusses how to optimize the

inspection, assembly, dismantling **1 decision-making**

in ,Tang Xiaoqing,Wang Chunli
 Guilin, Guangxi, China

accurate assessment of the supplier's rejects rate.

It further discusses how to optimize the

inspection, assembly, dismantling and market

lau **THE CESIOII-HIAKING**

in , Tang Xiaoqing, Wang Chunli
 Guilin, Guangxi, China

accurate assessment of the supplier's rejects rate.

It further discusses how to optimize the

inspection, assembly, dismantling and market
 in , Tang Xiaoqing, Wang Chunli

Guilin, Guangxi, China

accurate assessment of the supplier's rejects rate.

It further discusses how to optimize the

inspection, assembly, dismantling and market

launch strategies in the

decision-making of the enterprise, which can

be flexibly adjusted according to the situation

following assumptions about

to achieve the best production management

effect, reduce the production loss of the there is no m **in , Tang Xiaoqing, Wang Chunli**

Guilin, Guangxi, China

accurate assessment of the supplier's rejects rate.

It further discusses how to optimize the

inspection, assembly, dismantling and market

launch strategies in t **In , Iang Xiaoqing, Wang Chunli**
 Guilin, Guangxi, China

accurate assessment of the supplier's rejects rate.

It further discusses how to optimize the

inspection, assembly, dismantling and market

launch strategies i Grutin, Guangxi, China

accurate assessment of the supplier's rejects rate.

It further discusses how to optimize the

inspection, assembly, dismantling and market

launch strategies in the production process to

reduce co accurate assessment of the supplier's rejects rate.
It further discusses how to optimize the
inspection, assembly, dismantling and market
launch strategies in the production process to
reduce costs and improve product qual accurate assessment of the supplier's rejects rate.
It further discusses how to optimize the
inspection, assembly, dismantling and market
valuench strategies in the production process to
reduce costs and improve product qu accurate assessment of the supplier's rejects rate.
It further discusses how to optimize the
inspection, assembly, dismantling and market
launch strategies in the production process to
reduce costs and improve product qual It further discusses how to optimize the
inspection, assembly, dismantling and market
launch strategies in the production process to
reduce costs and improve product qualification
rates under a given defective rate[1].
Thi inspection, assembly, dismantling and market
launch strategies in the production process to
reduce costs and improve product qualification
rates under a given defective rate[1].
This data is derived from question B of the launch strategies in the production process to
reduce costs and improve product qualification
rates under a given defective rate[1].
This data is derived from question B of the 2024
National Mathematical Contest in Modelin reduce costs and improve product qualification
rates under a given defective rate[1].
This data is derived from question B of the 2024
National Mathematical Contest in Modeling for
College Students, including the content i rates under a given defective rate[1].
This data is derived from question B of the 2024
National Mathematical Contest in Modeling for
College Students, including the content in Table
1, as well as the four stages of parts This data is derived from question B of the 2024
National Mathematical Contest in Modeling for
College Students, including the content in Table
1, as well as the four stages of parts assembly,
finished product testing, de National Mathematical Contest in Modeling for
College Students, including the content in Table
1, as well as the four stages of parts assembly,
finished product testing, defective product
dismantling[6], and waste replacem College Students, including the content in Table 1, as well as the four stages of parts assembly, finished product testing, defective product dismantling[6], and waste replacement in the problem onecision-making process. 1, as well as the four stages of parts assembly,
finished product testing, defective product
dismantling[6], and waste replacement in the
production decision-making process. In order to
solve the problem and ensume the si thus the roduct testing, detective product
dismantling[6], and waste replacement in the
production decision-making process. In order to
solve the problem and ensure the simplification
and operability of the model, we make dismantling[6], and waste replacement in the
production decision-making process. In order t
solve the problem and ensure the simplificatio
and operability of the model, we make the
following assumptions about the problem: soive the problem and ensure the simplineation
and operability of the model, we make the
following assumptions about the problem: (1)
The test results are completely reliable, and
there is no missed detection and false det and operabiny of the model, we make the
following assumptions about the problem: (1)
The test results are completely reliable, and
there is no missed detection and false detection;
(2) The production process is static, tha there is no missed detection and laise detection;

(2) The production process is static, that is, there

are no influencing factors that change with time;

(3) The decision at each stage is linearly related

to the cost fu (2) The production process is static, that is, there
are no influencing factors that change with time;
(3) The decision at each stage is linearly related
to the cost function; (4) The quality of the
returned product is co

Programming

are no influencing factors that change with time;

(3) The decision at each stage is linearly related

to the cost function; (4) The quality of the

returned product is completely determined by

the results of previous dec (3) The decision at each stage is linearly related
to the cost function; (4) The quality of the
returned product is completely determined by
the results of previous decisions, and there is no
external influence.
2. Decis to the cost function; (4) The quality of the
returned product is completely determined by
the results of previous decisions, and there is no
external influence.
2. Decision Analysis and Research based on
Monte Carlo Simula returned product is completely determined by
the results of previous decisions, and there is no
external influence.
2. Decision Analysis and Research based on
Monte Carlo Simulation and Dynamic
Programming
2.1 Research Ide the results of previous decisions, and there is no
external influence.
2. Decision Analysis and Research based on
Monte Carlo Simulation and Dynamic
Programming
2.1 Research Ideas
For the decision-making problems at each s external influence.

2. Decision Analysis and Research based on

Monte Carlo Simulation and Dynamic

Programming

2.1 Research Ideas

For the decision-making problems at each stage

of the production process, we need to

c 2. Decision Analysis and Research based on
Monte Carlo Simulation and Dynamic
Programming
2.1 Research Ideas
5 For the decision-making problems at each stage
of the production process, we need to
comprehensively evaluate t 2. Decision Analysis and Research based on

Monte Carlo Simulation and Dynamic

Programming

2.1 Research Ideas

For the decision-making problems at each stage

of the production process, we need to

comprehensively evalua Monte Carlo Simulation and Dynamic
Programming
2.1 Research Ideas
For the decision-making problems at each stage
of the production process, we need to
comprehensively evaluate the defect rate of
spare parts and finished pr **2.1 Research Ideas**
 2.1 Research Ideas

For the decision-making problems at each stage

of the production process, we need to

comprehensively evaluate the defect rate of

spare parts and finished products, the cost of 2.1 Research Ideas
For the decision-making problems at each stage
of the production process, we need to
comprehensively evaluate the defect rate of
spare parts and finished products, the cost of
testing and dismantling, an 2.1 Research Ideas
For the decision-making problems at each
of the production process, we nee
comprehensively evaluate the defect r
spare parts and finished products, the c
testing and dismantling, and other factor
high-de

Economic Society and Humanities Vol. 1 No. 10, 2024

		Academic Education Publishing House											
												Economic Society and Humanities Vol. 1 No. 10, 2024	
								Table1. The Situation Encountered by Enterprises in Production					
Parts & Accessories 1 Circum				Parts & Accessories 2			Finished\product				Non-conforming finished products		
stance		Defecti- The unit						Cost of Defective The unit Cost of Defective Assembly Cost of		The		SwapDismantling	
	verate		price of detection	rate	price of detection		rate	costs	detection market loss			costs	
		the purchase			the purchase					price			
$\mathbf{1}$	10%	4	$\overline{2}$	10%	18	3	10%	6	3	56	6	5	
\overline{c}	20%	$\overline{4}$	$\overline{2}$	20%	18	3	20%	6	3	56	6	5	
3	10%	$\overline{4}$	$\overline{2}$	10%	18	3	10%	6	3	56	30	5	
$\overline{\mathcal{L}}$	20%	$\overline{\mathcal{L}}$	1	20%	18	$\mathbf{1}$	20%	6	$\overline{2}$	56	30	5	
5	10%	$\overline{4}$	8	20%	18	$\mathbf{1}$	10%	6	2	56	10	5	
6	5%	4	$\overline{2}$	5%	18	3	5%	6	3	56	10	40	
												Phase4: S_4 indicates the status of whether to	
2.2	Model	Analysis		for	Dynamic							process the returned non-conforming products,	
Programming												and the decision variable d_4 is the method of	
		2.2.1 Decision-making stages and analysis										processing. The cost of handling returned	
(1) Stage Breakdown non-conforming finished products is C_4 : The decision-making objective at each stage is							(4)						
$C_4 = C_r \cdot N_r$ to minimize the total cost at that stage. We In this context, C_r represents the cost of return													
decompose the cost of each stage, and set the processing, and N_r represents the number of													
state S_t to represent the state of the t-th stage, returns.													
and the decision variable d_t to represent the						After analyzing each phase, we then calculate							
	decision-making of the t-th stage[8]. The status,						the total cost C_t for each scenario in the						
	cost calculations and decisions at each stage are						nroblem [.]						

Programming

2 20% 4 2 20% 18 3 20% 6 3

3 10% 4 2 10% 18 3 10% 6 3

4 20% 4 1 20% 18 1 20% 6 2

5 10% 4 8 20% 18 1 10% 6 2

6 5% 4 2 5% 18 3 5% 6 3

2.2 Model Analysis for Dynamic process the returned non-c-

Programming and the deci 3 10% 4 2 10% 18 3 10% 6 3 30

4 20% 4 1 20% 18 1 20% 6 2 56

5 10% 4 8 20% 18 1 10% 6 2 56

6 5% 4 2 5% 18 3 5% 6 3 56

6 5% 4 2 5% 18 3 5% 6 3 56

2.2 Model Analysis for Dynamic process the returned non-conf

Programmin 4 20% 4 1 20% 18 1 20% 6 2

5 10% 4 8 20% 18 1 20% 6 2

6 5% 4 2 5% 18 3 5% 6 3
 2.2 Model Analysis for Dynamic process the returned non-**c**
 Programming 2.2.1 Decision-making stages and analysis for **Dynamic** process 5 10% 4 8 20% 18 1 10% 6 2 5%

6 5% 4 2 5% 18 3 5% 6 6 3 5%

Place-1: S_4 indicates the statured non-coni
 Programming

2.2. **Model Analysis for Dynamic** process the returned non-coni
 Programming

2.2. Decision-mak **2.2 Model Analysis for Dy**
 2.2 Model Analysis for Dy
 Programming

2.2.1 Decision-making stages and analysis

(1) Stage Breakdown

The decision-making objective at each sto

to minimize the total cost at that stage
 2.2 Model Analysis for Dynamic Phase4: S_4 indicates the statuted programming

Programming and the decision variable d₄

2.2.1 Decision-making stages and analysis and the decision variable d₄

(1) Stage Breakdown no **Example 10**
 **Example 2.2.1 Decision-making stages and analysis

2.2.1 Decision-making objective at each stage is

(1) Stage Breakdown

The decision-making objective at each stage is

to minimize the total cost at that s Programming**
 Progression-making stages and analysis

2.2.1 Decision-making stages and analysis the consisting. The cost of halo

(1) Stage Breakdown

The decision-making objective at each stage is $C_4 = C_r \cdot N_r$

to min 2.2.1 Decision-making stages and analysis processing. The

(1) Stage Breakdown

the decision-making objective at each stage is $C_4 = C_r \cdot N_r$

to minimize the total cost at that stage. We In this context, C

decompose the (1) stage Breakdown

in-conforming

the decision-making objective at each stage is

to minimize the total cost at that stage. We

decompose the cost of each stage, and set the

state S_t to represent the state of the t-t In this context, C_r represent the cost at mat stage. We in this context, C_r represent the state S_t to represent the state of the t-th stage, and sect in the decision variable d_t to represent the A and A and A are
compose ine cost of each stage, and set ine processing, and N_r represent
tate S_t to represent the state of the t-th stage, returns.
and the decision variable d_t to represent the After analyzing each phase, w
dec

2 elecision variable d_t to represent the

n-making of the t-th stage[8]. The status, the total is

leulations and decisions at each stage are problem:

ws:
 C_t = \therefore Regarding its status, S_1 represents the Finall state S_t to represent the state of the 1-th stage,
decision variable d_t to represent the After analyzing each phase,
decision-making of the t-th stage[8]. The status, the total cost C_t for each
cost calculations and and the decision variable d_t to represent the
decision-making of the t-th stage[8]. The status, the total
cost calculations and decisions at each stage are
problem:
as follows:
 C_t =
Phase 1: Regarding its status, S_1 decision-making of the t-th stage [s]. The status, the total cost C_t for each
as follows:
as follows:
as follows:
as follows:
as follows:
as follows:
as follows:
as the status of whether to inspect components 1 and 2,
cost calculations and decisions at each stage are

are problem:
 $C_t = C_1 + C_2 + C_3$ -

Phase 1: Regarding its status, S_1 represents the

state of whether to inspect Components 1 and 2, for each stage, which re

and the de 2 is variable 2 is whether to conduct the inspection of the inspection of the inspection. The cost of the inspection variable d_1 is whether to expected cost when conduct the inspection. The cost C_1 for adopted under Final Primally, we construct the
state of whether to inspect Components 1 and 2,
and the decision variable d_1 is whether to expected cost when t
conduct the inspection. The cost C_1 for adopted under the state.
inspe

$$
P_1 = P_1 \cdot C_{d1} + P_2 \cdot C_{d2}
$$

and one weakers of spectra cost when the spectrum of expected cost when the state S_t :

inspecting and assembling the components:
 $C_1 = P_1 \cdot C_{d1} + P_2 \cdot C_{d2}$ (1)

In this context, P_1 and P_2 represent the defect

r the mission of interesting and assembling the components:
 $C_1 = P_1 \cdot C_{d1} + P_2 \cdot C_{d2}$ (1) and $C_{\xi_i} = m_i(C(S_t, a_t) + E[V_t(S_t)] = m_i(C(S_t, a_t)) + E[V_t(S_t)]$ In this context, P_1 and P_2 represent the defect

In this context, P_1 and P_2 represent the defect

rates of spare part 1 and spare part 2,

inspection outs for these parts.

inspection contes for these parts.

$$
C_2 = P_f \cdot C_{df} \tag{2}
$$

 $C_1 = P_1 \cdot C_{d1} + P_2 \cdot C_{d2}$ (1)

context, P_1 and P_2 represent the defect

of spare part 1 and spare part 2,

ively, while C_{d1} and C_{d2} represent the

ion costs for these parts.

2: S_2 indicates the status Figure 1 T event is the program, we will also use

In this context, P_1 and P_2 represent the defect

respectively, while C_{d1} and C_{d2} represent the

inspectively, while C_{d1} and C_{d2} represent the

inspe m uns context, r_1 and r_2 represent the uccess of spare part 1 and spare part 2,
respectively, while C_{d1} and C_{d2} represent the overall cost in the end
inspection costs for these parts.
Phase 2: S_2 indicate respectively, while C_{d1} and C_{d2} represent the correspectively, while C_{d1} and C_{d2} represent the inveval cost inspection costs for these parts. (2) Decision ana finished product is inspected, and the decisio Expectively, wince a_1 and a_2 repused the overall cost in the end.

inspection costs for these parts.

Phase 2: S_2 indicates the status of whether the

finished product is inspected, and the decision
 $C_2 = P_f \cdot C_{df$ mepoculous of unce pais.

Thase 2: S_2 indicates the status of whether the

finished product is inspected, and the decision

variable d_2 is whether to conduct the inspection

The cost of finished product inspection i First 2: 32 indicates the status of whether the
finished product is inspected, and the decision
variable d_2 is whether to conduct the inspection
The cost of finished product inspection is C_2 :
 $C_2 = P_f \cdot C_{df}$ (2
In th this context, P_f represents the defect
finished product, and C_{df} represents t
inspecting the finished product.
ase 3: S_3 indicates the status of whe
assemble the non-conforming f
ducts, and the decision variable e ext, P_f represents the defect rate of

product, and C_{df} represents the cost

g the finished product.

3 indicates the status of whether to

3 indicates the status of whether to

(2) Defect

the non-conforming finishe The cost of finished product inspection is C_2 :
 $C_2 = P_f \cdot C_{df}$

In this context, P_f represents the defect rate

the finished product, and C_{df} represents the c

of inspecting the finished product.

Phase 3: S_3 i $C_2 = P_f \cdot C_{df}$ (2) unqualitied spare I
 $C_2 = P_f \cdot C_{df}$ (2) Whether to dete

the finished product, and C_{df} represents the cost (1) Detection cost:

or of inspecting the finished product.

Phase 3: S₃ indicates the sta In this context, P_f represents the defect rate of
the finished product, and C_{df} represents the cos
of inspecting the finished product.
Phase 3: S_3 indicates the status of whether to
disassemble the non-conforming

$$
C_3 = C_a \cdot N_f \tag{3}
$$

10% 6 3 56 30

20% 6 2 56 30

10% 6 2 56 10

5% 6 3 56 10

5% 6 3 56 10

ee4: S₄ indicates the status of wheth

ees the returned non-conforming pro

the decision variable d₄ is the meth

essing. The cost of handling r 6 3 56 30 5

6 2 56 30 5

6 2 56 10 5

6 3 56 10 40

mdicates the status of whether 1

returned non-conforming product

sion variable d₄ is the method of

The cost of handling returne

ing finished products is C₄:

N $\frac{10\%}{20\%}$ 6 $\frac{2}{2}$ 56 30 5
 $\frac{10\%}{5}$ 6 $\frac{2}{2}$ 56 10 5
 $\frac{5\%}{5}$ 6 $\frac{3}{2}$ 56 10 40

Phase4: S₄ indicates the status of whether to

process the returned non-conforming products,

and the decision var 20% 0 2 30 30 3

10% 6 2 56 10 5

5% 6 3 56 10 40

Phase4: S₄ indicates the status of whether to

process the returned non-conforming products,

and the decision variable d₄ is the method of

processing. The cost of h Finally, and the decision variable d₄ is the returned process the returned non-conforming products, and the decision variable d₄ is the method of processing. The cost of handling returned non-conforming finished produ

problem:

$$
C_t = C_1 + C_2 + C_3 + C_4 \tag{5}
$$

Example 11 For cost of handling returned
conforming finished products is C_4 :
 $C_4 = C_r \cdot N_r$ (4)
is context, C_r represents the cost of return
essing, and N_r represents the number of
ns.
contal cost C_t for each scena process the returned non-conforming products,
and the decision variable d₄ is the method of
processing. The cost of handling returned
non-conforming finished products is C₄:
 $C_4 = C_r \cdot N_r$
In this context, C_r represen and the decision variable u_4 is the method of
processing. The cost of handling returned
non-conforming finished products is C_4 :
 $C_4 = C_r \cdot N_r$ (4)
In this context, C_r represents the cost of return
processing, and N processing. The cost of handling returned
non-conforming finished products is C_4 :
 $C_4 = C_r \cdot N_r$ (4)
In this context, C_r represents the cost of return
processing, and N_r represents the number of
returns.
After analyz :

$$
V_t(S_t) = \min_{a_t} \{ C(S_t, a_t) + \mathbb{E}[V_{t+1}(S_{t+1}) | S_t, a_t] \} (6)
$$

fter analyzing each phase, we then c

e total cost C_t for each scenario

oblem:
 $C_t = C_1 + C_2 + C_3 + C_4$

mally, we construct the value function

r each stage, which represents the m

pected cost when the optimal stra

opt th phase, we then calculate
for each scenario in the
 $+ C_3 + C_4$ (5)
t the value function $V_t(S_t)$
ch represents the minimum
en the optimal strategy is
ate S_t :
 $,a_t$) + $\mathbb{E}[V_{t+1}(S_{t+1})|S_t, a_t]$ }(6)
will also use recursi In this context, C_r represents the cost of return
processing, and N_r represents the number of
returns.
After analyzing each phase, we then calculate
the total cost C_t for each scenario in the
problem:
 $C_t = C_1 + C_2 + C_$ processing, and N_r represents the number of
returns.
After analyzing each phase, we then calculate
the total cost C_t for each scenario in the
problem:
 $C_t = C_1 + C_2 + C_3 + C_4$ (5)
Finally, we construct the value function returns.

After analyzing each phase, we then calculate

the total cost C_t for each scenario in the

problem:
 $C_t = C_1 + C_2 + C_3 + C_4$ (5)

Finally, we construct the value function $V_t(S_t)$

for each stage, which represents After analyzing each phase, we then calculate
the total cost C_t for each scenario in the
problem:
 $C_t = C_1 + C_2 + C_3 + C_4$ (5)
Finally, we construct the value function $V_t(S_t)$
for each stage, which represents the minimum
ex the total cost C_t for each scenario in the
problem:
 $C_t = C_1 + C_2 + C_3 + C_4$ (5)
Finally, we construct the value function $V_t(S_t)$
for each stage, which represents the minimum
expected cost when the optimal strategy is
adopt

problem:
 $C_t = C_1 + C_2 + C_3 + C_4$ (5)

Finally, we construct the value function $V_t(S_t)$

for each stage, which represents the minimum

expected cost when the optimal strategy is

adopted under the state S_t :
 $V_t(S_t) = \min_{a_t} \$ $C_t = C_1 + C_2 + C_3 + C_4$ (5)
Finally, we construct the value function $V_t(S_t)$
for each stage, which represents the minimum
expected cost when the optimal strategy is
adopted under the state S_t :
 $V_t(S_t) = min\{C(S_t, a_t) + \mathbb{E}[V_{t+1$ Finally, we construct the value function $V_t(S_t)$
for each stage, which represents the minimum
expected cost when the optimal strategy is
adopted under the state S_t :
 $V_t(S_t) = min\{C(S_t, a_t) + \mathbb{E}[V_{t+1}(S_{t+1})|S_t, a_t]\}(6)$
In the in the space of the control of the cost of the cost of the cost of the spaceted cost when the optimal strategy is adopted under the state S_t :
 $V_t(S_t) = min\{C(S_t, a_t) + \mathbb{E}[V_{t+1}(S_{t+1})|S_t, a_t]\}(6)$

In the program, we will als expected cost when the optimal strategy is
adopted under the state S_t :
 $V_t(S_t) = min\{C(S_t, a_t) + \mathbb{E}[V_{t+1}(S_{t+1})|S_t, a_t]\}(6)$
In the program, we will also use recursion, loops,
and other methods to determine the optimal
decisi adopted under the state S_t :
 $V_t(S_t) = min\{C(S_t, a_t) + \mathbb{E}[V_{t+1}(S_{t+1})|S_t, a_t]\}(6)$

In the program, we will also use recursion, loops,

and other methods to determine the optimal

decisions for each stage, in order to minimiz $V_t(S_t) = min\{C(S_t, a_t) + \mathbb{E}[V_{t+1}(S_{t+1})|S_t, a_t]\}(6)$
In the program, we will also use recursion, loops,
and other methods to determine the optimal
decisions for each stage, in order to minimize
the overall cost in the end.
(2) In the program, we will also use recursion, land other methods to determine the opt
decisions for each stage, in order to minin
the overall cost in the end.
(2)Decision analytic
1. Deciding whether to test spare parts: In In the program, we will also use recursion, loops,

and other methods to determine the optimal

decisions for each stage, in order to minimize

the overall cost in the end.

(2) Decision analytic

D. Deciding whether to te and other methods to determine the optimal
decisions for each stage, in order to minimize
the overall cost in the end.
(2)Decision analytic
the cost spare parts in the production process, enterprises can choose to
test spa

product inspection is C_2 :

product inspection is C_2 :

imqualified spare parts 1 and 2, in

represents the defect rate of

consideration for two factors:

is, and C_{df} represents the cost

ished product.

spare par decisions for each stage, in order to minimize
the overall cost in the end.
(2)Decision analytic
1. Deciding whether to test spare parts: In the
production process, enterprises can choose to
test spare parts 1 and 2, in or the overall cost in the end.

(2)Decision analytic

1. Deciding whether to test spare parts: In the

production process, enterprises can choose to

test spare parts 1 and 2, in order to reduce

unqualified spare parts in (2) Decision analytic

1. Deciding whether to test spare parts: In the

production process, enterprises can choose to

test spare parts 1 and 2, in order to reduce

unqualified spare parts in the assembly process.

Whether 1. Deciding whether to test spare parts: In the
production process, enterprises can choose to
test spare parts 1 and 2, in order to reduce
unqualified spare parts in the assembly process.
Whether to detect spare parts, the production process, enterprises can choose to
test spare parts 1 and 2, in order to reduce
unqualified spare parts in the assembly process
Whether to detect spare parts, the main
consideration for two factors:
(1) Detectio test spare parts 1 and 2, in order to reduce
unqualified spare parts in the assembly process.
Whether to detect spare parts, the main
consideration for two factors:
(1) Detection cost: the cost of each detection of a
spare unqualitied spare parts in the assembly process.
Whether to detect spare parts, the main
consideration for two factors:
(1) Detection cost: the cost of each detection of a
spare part.
(2) Defect rate: assuming that the def Whether to detect spare parts, the main consideration for two factors:
(1) Detection cost: the cost of each detection of a spare part.
(2) Defect rate: assuming that the defect rate is very low and the cost of testing is h

Economic Society and Humanities Vol. 1 No. 10, 2024

(such as the rate of defective finished product, programming model to

return loss, etc.) exceed the cost of detection. If decision at each stage of t
 $C_{d1, d2} < C_4$ **Economic Society and Humanities Vol. 1 No. 10, 2024**

(such as the rate of defective finished product, programming model to determ

return loss, etc.) exceed the cost of detection. If decision at each stage of the pro-
 Economic Society and Humanities Vol. 1 No. 10, 2024

(such as the rate of defective finished product, programming mode

return loss, etc.) exceed the cost of detection. If
 $C_{d1, d2} < C_4$, recommended not to test[2].

2

Economic Society and Humanities Vol. 1 No. 10, 2024

(such as the rate of defective finished product, programming model to deter-

return loss, etc.) exceed the cost of detection. If decision at each stage of the pro-
 Economic Society and Humanities Vol. 1 No. 10, 2024

(such as the rate of defective finished product, programming model to

return loss, etc.) exceed the cost of detection. If decision at each stage of $C_{d1, d2} < C_4$, r **Economic Society and Humanities Vol. 1 No. 10, 2024**

(such as the rate of defective finished product, programming model to deter

return loss, etc.) exceed the cost of detection. If decision at each stage of the product **Economic Society and Humanities Vol. 1 No. 10, 2024**

(such as the rate of defective finished product, programming model to deter

return loss, etc.) exceed the cost of detection. If decision at each stage of the pro-

C **Economic Society and Humanities Vol. 1 No. 10, 2024**

(such as the rate of defective finished product, programming model to detect

return loss, etc.) exceed the cost of detection. If

call, $a_2 < C_4$, recommend testing; **Economic Society and Humanities Vol. 1 No. 10, 2024**

(such as the rate of defective finished product, programming model to d

return loss, etc.) exceed the cost of detection. If decision at each stage of th

C_{d1, d2} < **Economic Society and Humanities Vol. 1 No. 10, 2024**

(such as the rate of defective finished product, programmi

return loss, etc.) exceed the cost of detection. If decision at
 $C_{d1, d2} < C_4$, recommende not to test[2] **Economic Society and Humanities Vol. 1 No. 10, 2024**

(such as the rate of defective finished product, programming model to return loss, etc.) exceed the cost of detection. If decision at each stage of the $C_{d1, d2} < C_4$ **Economic Society and Humanities Vol. 1 No. 10, 2024**

(such as the rate of defective finished product, programming model to deter

return loss, etc.) exceed the cost of detection. If decision at each stage of the pr

C_d (such as the rate of defective finished product, programming model to detern
return loss, etc.) exceed the cost of detection. If decision at each stage of the pro
C_{d1,d2} < C₄, recommended not to test[2].
2. Deciding w such as the concerned minister product in the concerned product

return loss, etc.) exceed the cost of detection. If decision at each stage of the C_{d1} , $d2 < C_4$, recommended not to test[2].

2. Deciding whether to tes Cann ross, enc., the commend testing; on the (3) Cost Calculation: Using the contrary, it is recommended not to test[2].

2. Deciding whether to test the finished product:

companies need to decide whether to test the for C_{d1}, $dz \sim c_4$, recommend cessing, on the (3) example contrary, it is recommended not to test [2].

2. Deciding whether to test the finished product: at each foread sesembled finished product or not, if not, the finished contrary, it is recommended not to test[2].

2. Deciding whether to test the finished product:

companies need to decide whether to test the for each steam of sesembled finished product or not, if not, the if S_i is a ra

2. Deciding whether to test the finished product:

Companies need to decide whether to test the informal signals are assembled finished product or not, if not, the

foreach scenario.

decision to test the finished product Companies need to decide whether to test the

singular finished product or not, if not, the

finished product directly to the market. The

decision to test the finished product mainly

and product and product mainly

mark thushed product directly to the market. The production sample, the expect
decision to test the finished product mainly Monte Carlo algorithm can be
depends on the following factors:
(1) Finished product defect rate: If th decision to test the timshed product mainly

depends on the following factors:
 $\hat{C} = \frac{1}{N} \sum_{i=1}^{N} C(S_i)$

(1) Finished product defect rate is high, directly into the

market will lead to a large number of

substandar depends on the following factors:

(1) Finished product defect rate: If the finished

market will lead to a large number of $\Sigma_{i=1}^{N}C(S_i)$ is the cost under sa

market will lead to a large number of $\Sigma_{i=1}^{N}C(S_i)$ is (1) Finished product defect rate: If the finished

product defect rate is high, directly into the

market will lead to a large number of

substandard products sold, resulting in the loss

of returns (including logistics c

loss.

product detect rate is high, directly into the

substandard products sold, resulting in the loss

substandard products sold, resulting in the loss

of returns (including logistics costs, loss of

corporate reputation, etc market will lead to a large number of

substandard products sold, resulting in the loss

of returns (including logistics costs, loss of

corporate reputation, etc.).

(2) Testing cost: the cost of finished product

testin substandard products sold, resulting in the loss

of returns (including logistics costs, loss of

corporat reputation, etc.)

(2) Testing cost: the cost of finished product

testing is relatively high, companies need to
 of returns (including logistics costs, loss of

corporate reputation, etc.).

(2) Testing cost: the cost of finished product

testing is relatively high, companies need to

balance the cost of testing and defective rate o corporate reputation, etc.).

(2) Testing cost: the cost of finished product

teating is relatively high, companies need to

balance the cost of testing and defective rate of

the entropy weight method is

loss.

loss.

((2) Iesting cost: the cost of finished product
testing is relatively high, companies need to
balance the cost of testing and defective rate of
indicators to evaluate
loss.
(3) Decision basis: Determine whether to test the testing is relatively high, companies need to

balance the cost of testing and defective rate of

loss.

(3) Decision basis: Determine whether to test the

(3) Decision basis: Determine whether to test the

transformal in balance the cost of testing and detective rate of

(3) Decision basis: Determine whether to test the

(3) Decision basis: Determine whether to test the

finished product by comparing the return loss

that may occur if the finished product by comparing the term in the material of the material of the mislen and the product is not that may occur if the finished product is not tested with the cost of testing.

3. Deciding whether to disassembl (3) Decision basis: Determine whether to test the

finished product by comparing the return loss

seconarios,

that may occur if the finished product is not

tested with the cost of testing.

3. Deciding whether to disass the product by comparing the return loss

that may occur if the finished product is not

the cost of testing.

3. Deciding whether to disassemble the

13 Occiding whether to disassemble the

text of disassemble the cost o that may occur if the finished product is not
tested with the cost of testing.
3. Deciding whether to disassemble the (1) Data Standardiza
unqualified finished products: If the defective Standardize the data
product are f tested with the cost of testing.

3. Deciding whether to disassemble the (1) Data Standardization

unqualified finished products are found in the process of finished

product inspection, you can choose to scrap

them or d 3. Deciding whether to disassemble the

unqualified finished products: If the defective

product inspection, you can choose to finished

product inspection, you can choose to scrap

them or dismantle them. After dismantli unqualitied timshed products: It the defective

product inspection, you can choose to finished to eliminate the influence of

product inspection, you can choose to scrap

them or dismantle them. After dismantling, the

sp products are tound in the process of timshed

the mordismutile them and the process of scrap

the mordismutile the scriptions of the distanting the

spare parts will not be damaged, the company

spare parts will not be da product inspection, you can choose to scrap

them or dismantle them. After dismantling, the

spare parts will not be damaged, the company

can put these dismantled spare parts back into

production, but the dismantling pr

24
 Particular Education

programming model to determine the optimal

decision at each stage of the process[10].

(3) Cost Calculation: Using the Monte Carlo

sampling method, calculate the cost distribution

at each sta 24
 Configurers Accole Times Publishing House

programming model to determine the optimal

decision at each stage of the process[10].

(3) Cost Calculation: Using the Monte Carlo

sampling method, calculate the cost dist 24
 Constant Control Control Constant Control Constant Constant Constant Publishing House

programming model to determine the optimal

decision at each stage of the process[10].

(3) Cost Calculation: Using the Monte Car 24
 Solution
 24
 Academic Education

programming model to determine the optimal

decision at each stage of the process[10].

(3) Cost Calculation: Using the Monte Carlo

sampling method, calculate the cost distribution

at each stag 24
 Example 19 Academic Educatio

programming model to determine the optima

decision at each stage of the process[10].

(3) Cost Calculation: Using the Monte Carl

sampling method, calculate the cost distribution

at e 24
 Propresof Accelering Education

programming model to determine the optimal

decision at each stage of the process[10].

(3) Cost Calculation: Using the Monte Carlo

sampling method, calculate the cost distribution
 24

Publishing House

programming model to determine the optimal

decision at each stage of the process[10].

(3) Cost Calculation: Using the Monte Carlo

sampling method, calculate the cost distribution

at each stage an 24
 Contriguing House

programming model to determine the optimal

decision at each stage of the process[10].

(3) Cost Calculation: Using the Monte Carlo

sampling method, calculate the cost distribution

at each stage 24

Publishing House

programming model to determine the optimal

decision at each stage of the process[10].

(3) Cost Calculation: Using the Monte Carlo

sampling method, calculate the cost distribution

at each stage an **Example 19**

programming model to determine the optimal

decision at each stage of the process[10].

(3) Cost Calculation: Using the Monte Carlo

sampling method, calculate the cost distribution

at each stage and estima decision at each stage of the process[10].

(3) Cost Calculation: Using the Monte Carlo

sampling method, calculate the cost distribution

at each stage and estimate the expected total cost

for each scenario.

If S_i is (3) Cost Calculation: Using the Monte Carlo
sampling method, calculate the cost distribution
at each stage and estimate the expected total cost
for each scenario.
If S_i is a random variable and denotes the
production sa

$$
\widehat{C} = \frac{1}{N} \sum_{i=1}^{N} C(S_i)
$$
\n(7)

where N is the number of samples simulated and $\sum_{i=1}^{N} C(S_i)$ is the cost under sample S_i .
Through a large number of sample calculations,

at each stage and estimate the expected total cost
for each scenario.
If S_i is a random variable and denotes the
production sample, the expected cost \hat{C} of the
Monte Carlo algorithm can be expressed as:
 $\hat{C} = \frac{1$ for each scenario.

If S_i is a random variable and denotes the

production sample, the expected cost \hat{C} of the

Monte Carlo algorithm can be expressed as:
 $\hat{C} = \frac{1}{N} \sum_{i=1}^{N} C(S_i)$ (7)

where N is the number o If S_i is a random variable and denotes the
production sample, the expected cost \hat{C} of the
Monte Carlo algorithm can be expressed as:
 $\hat{C} = \frac{1}{N} \sum_{i=1}^{N} C(S_i)$ (7)
where N is the number of samples simulated and
 production sample, the expected cost \tilde{C} of the

Monte Carlo algorithm can be expressed as:
 $\tilde{C} = \frac{1}{N} \sum_{i=1}^{N} C(S_i)$ (7)

where N is the number of samples simulated and
 $\sum_{i=1}^{N} C(S_i)$ is the cost under samp Monte Carlo algorithm can be expressed as:
 $\hat{C} = \frac{1}{N} \sum_{i=1}^{N} C(S_i)$ (7)

where N is the number of samples simulated and
 $\sum_{i=1}^{N} C(S_i)$ is the cost under sample S_i.

Through a large number of sample calculations $\hat{C} = \frac{1}{N} \sum_{i=1}^{N} C(S_i)$ (7)
where N is the number of samples simulated and
 $\sum_{i=1}^{N} C(S_i)$ is the cost under sample S_i.
Through a large number of sample calculations,
we obtain the optimal decision scheme with th where N is the number of samples simulated and $\sum_{i=1}^{N} C(S_i)$ is the cost under sample S_i .
Through a large number of sample calculations, we obtain the optimal decision scheme with the we pected cost for each stage in WELT IT IS the number of samples simulated and $\sum_{i=1}^{N} C(S_i)$ is the cost under sample S_i .
Through a large number of sample calculations we obtain the optimal decision scheme with the expected cost for each stage in e $\Sigma_{i=1}$ C(S_i) is the cost under sample S_i.
Through a large number of sample calculations,
we obtain the optimal decision scheme with the
expected cost for each stage in each case.
2.4 **Entropy Weighting Method**
The Through a large number of sample calculations,
we obtain the optimal decision scheme with the
expected cost for each stage in each case.
2.4 **Entropy Weighting Method**
The entropy weight method is used for objective
indic we obtain the optimal decision scheme with the
expected cost for each stage in each case.
2.4 **Entropy Weighting Method**
The entropy weight method is used for objective
indicators to evaluate and synthesize the
indicators **2.4 Entropy Weighting Method**

The entropy weight method is used for objective

indicators to evaluate and synthesize the

indicators for solving different decision-making

scenarios, and the priority of the indicators i The entropy weight method is used for objective
indicators to evaluate and synthesize the
indicators for solving different decision-making
scenarios, and the priority of the indicators is
judged by calculating the entropy The contractive size the promotion that is value and indicators is value and indicators cale. The (8)

(8)

f the i-th is the tions cale of the i-th is is the tions cale. maliators to evaluate and synthesize the
indicators for solving different decision-making
scenarios, and the priority of the indicators is
judged by calculating the entropy value and
weight of the indicators for scoring[3

$$
x^{'}_{ij} = \frac{x_{ij} - \min(x_j)}{\max(x_j) - \min(x_j)}
$$
(8)

(3) Decision basis: Determine whether to test the finished product by comparing the return loss	scenarios, and the priority of the indicators is judged by calculating the entropy value and		
that may occur if the finished product is not	weight of the indicators for scoring[3].		
tested with the cost of testing.	(1) Data Standardization		
3. Deciding whether to disassemble the	Standardize the data of cost and other indicators		
unqualified finished products: If the defective	to eliminate the influence of the scale. The		
products are found in the process of finished	standardization formula is as follows:		
product inspection, you can choose to scrap			
them or dismantle them. After dismantling, the	$x'_{ij} = \frac{x_{ij} - min(x_j)}{max(x_i) - min(x_i)}$		(8)
spare parts will not be damaged, the company can put these dismantled spare parts back into	where x_{ii} is the original value of the i-th		
production, but the dismantling process requires	scenario on the j-th indicator and x_{ij} is the		
a certain cost. The decision to disassemble	normalized value.		
depends on the following factors:		Table 2. Decision Handling Situations	
(1) If the cost of dismantling is less than the	Scenario 1:	Scenario 2:	Scenario 3:
value of the dismantled parts, it is recommended	---- Scenario	---- Scenario	---- Scenario
to dismantle and recycle the parts for reuse.	Handling ----	Handling ----	Handling ----
(2) If the cost of dismantling is higher and the	Component 1	Component 1	Component 1
value of recovered spare parts is lower, it is			Inspection: Yes Inspection: Yes Inspection: Yes
recommended to scrap the unqualified finished	Component 2	Component 2	Component 2
products directly to save the cost of dismantling.			Inspection: Yes Inspection: Yes Inspection: Yes
(3) Decision basis: Calculate whether the benefit	Final Product	Final Product	Final Product
of dismantling is higher than the cost of	Inspection: No		Inspection: No Inspection: No
dismantling[9].			Disassembly of Disassembly of Disassembly of
	Unqualified	Unqualified	Unqualified
2.3 Monte Carlo Simulation Steps	Finished	Finished	Finished
(1) Sample Generation: Based on the actual	Products: No	Products: No	Products: No
production conditions, randomly generate a set	Scenario 2:	Scenario 2:	Scenario 2:
of samples to simulate the production data under	---- Scenario	---- Scenario	---- Scenario
six distinct scenarios. Each scenario represents	Handling ----	Handling ----	Handling ----
different operational conditions.	Component 1	Component 1	Component 1
(2) Dynamic Programming Application: For	Inspection: Yes		Inspection: No Inspection: Yes
each generated sample, run the dynamic	Component 2	Component 2	Component 2
51			

$$
E_j = -k \sum_{i=1}^m p_{ij} \ln(p_{ij}) \tag{9}
$$

of information of the indicator and is calculated
as follows:
 $E_j = -k \sum_{i=1}^{m} p_{ij} ln(p_{ij})$ (9)
where p_{ij} is the proportion of standardized
values for the i-th program on the j-th indicator
and k is a constant.
(3) Determ $E_j = -\kappa \sum_{i=1}^{n} p_{ij} \ln(p_{ij})$

where p_{ij} is the proportion of standardized

values for the i-th program on the j-th indicator

and k is a constant.

(3) Determine the weights

Calculate the weight of each indicator acc

$$
w_j = \frac{1 - E_j}{\sum_{j=1}^n (1 - E_j)}
$$
(10)

$$
S_i = \sum_{j=1}^n w_j \dot{x_{ij}} \tag{11}
$$

3. Calculate the weights

(3) Determine the weights

Calculate the weight of each indicator according
 $w_j = \frac{1-E_j}{\sum_{j=1}^n (1-E_j)}$ (10)
 2.5 Scoring and Sorting programm
 2.5 Scoring and Sorting programm

The composi

Solution Results and Analysis

Similar in the following scoring formula:

Similar Similar and Analysis

By utilizing Python programs and formulas for

decision-making calculations and solutions, we

have derived the decis $S_i = \sum_{j=1}^{n} w_j \cdot x_{ij}$ (11) analysis

olution Results and Analysis

tililizing Python programs and formulas for

sion-making calculations and solutions, we

derived the decision handling for the

wing six scenarios and c

			သပ
	3. Solution Results and Analysis		
		By utilizing Python programs and formulas for	40
		decision-making calculations and solutions, we	
		have derived the decision handling for the	30
		following six scenarios and created a table 2:	
		By employing dynamic programming and the	20
		Monte Carlo method, we have optimized the	10
		decision-making at each stage for the six	
		production scenarios. The total costs for each	
	situation are as follows table 3:		$\overline{2}$ Figure 1. Total Cost and Stand
		Table 3. Total Costs for Six Situations	Under Six Condition
Situation	Average	Average Standard	
	Total Cost	Deviation	4. Reach a Verdict
1	12.40	2.91	Situation 1: With the highest
\overline{c}	13.81	3.91	demonstrates the best perform
3	15.05	10.30	control, detection costs, disasse
$\overline{4}$	17.69	12.73	and replacement losses.
5	13.20	4.37	Situation 2: The overall score is
6	46.88	2.89	due to not inspecting finished p
		From this, it can be concluded that Scenario 1	dealing with returned goods, res
		offers the most cost-effective and stable solution,	overall costs.
		making it the best option currently available.	Situation 3: Although the scores
		To ensure the results are more rigorous, we have	not dismantling substandard finis
		used the Entropy Weight Method to evaluate the	may not optimally control certain
		decision-making schemes for the six scenarios	Situation 4: The overall rating i
		comprehensively. The resulting judgment matrix	for scenarios with a more genero
		and scoring outcomes are as follows table 4,5:	Situation 5: The overall score is
		Table 4. Entropy Weight Method Judgment	due to the high cost of testing Co
	Matrix		Situation 6: The score is relative
	Judgment Matrix		high disassembly costs

Table 4. Entropy Weight Method Judgment
 Table 4. Entropy Weight Method Subsettion Calculation 2: The over
 Table 4. Entropy Weight Method to evaluate the mast cost-effective and stable solution, a situation 2: The o 17.69

13.20

4.37

46.88

2.89

and replace

Situation 2

due to not

dealing with

cost-effective and stable solution,

suits are more rigorous, we have

suits are more rigorous, we have

more dismany

Situation 3

suits

Matrix

corporate decision-making. Calculate the weights of each indicator according

Calculate the wight of each indicator according
 $w_j = \frac{1-E_j}{\sum_{j=1}^n (1-E_j)}$ (10) 6

2.5 Scoring and Sorting

The composite score for each program was

calculated and the Shuation Complements Score

1 8.45

2 9.76

3 12.88

4 15.55

5 9.59

6 28.86

Subsequently, we combined dynamic

programming with the Monte Carlo method to

simulate the entire sampling inspection process.

The results ob

4. Reach a Verdict

Situation 1: With the highest overall score, it demonstrates the best performance in cost control, detection costs, disassembly expenses, and replacement losses.

Situation 2: The overall score is relatively low. due to not inspecting finished products and not Figure 1. Total Cost and Standard Deviation

Figure 1. Total Cost and Standard Deviation

Under Six Conditions

4. Reach a Verdict

Situation 1: With the highest overall score, it

demonstrates the best performance in cost Figure 1. Total Cost and Standard Deviation
Under Six Conditions
4. Reach a Verdict
Situation 1: With the highest overall score, it
demonstrates the best performance in cost
control, detection costs, disassembly expenses,
 Figure 1. Total Cost and Standard Deviation

Figure 1. Total Cost and Standard Deviation

Under Six Conditions

4. Reach a Verdict

Situation 1: With the highest overall score, it

demonstrates the best performance in cos **Figure 1. Total Cost and Standard Deviatio**
 Figure 1. Total Cost and Standard Deviatio
 Inder Six Conditions
 4. Reach a Verdict

Situation 1: With the highest overall score,

demonstrates the best performance in c Figure 1. Total Cost and Standard Deviation

Under Six Conditions

4. Reach a Verdict

Situation 1: With the highest overall score, it

demonstrates the best performance in cost

control, detection costs, disassembly expen Figure 1. Total Cost and Standard Deviation
Under Six Conditions
4. Reach a Verdict
Situation 1: With the highest overall score, it
demonstrates the best performance in cost
control, detection costs, disassembly expenses,
 Example 15 Conditions
 4. Reach a Verdict

Situation 1: With the highest overall score, it

demonstrates the best performance in cost

control, detection costs, disassembly expenses,

Situation 2: The overall score is **4. Reach a Verdict**
Situation 1: With the highest overall score, it
demonstrates the best performance in cost
control, detection costs, disassembly expenses,
and replacement losses.
Situation 2: The overall score is rela 4. **Reach a Verdict**
Situation 1: With the highest overall score, it
demonstrates the best performance in cost
control, detection costs, disassembly expenses,
stand replacement losses.
Situation 2: The overall score is rel Situation 1: With the highest overall score, it
demonstrates the best performance in cost
control, detection costs, disassembly expenses,
situation 2: The overall score is relatively low,
due to not inspecting finished pro demonstrates the best performance in cost
control, detection costs, disassembly expenses,
and replacement losses.
Situation 2: The overall score is relatively low,
due to not inspecting finished products and not
dealing wi control, detection costs, disassembly expenses,
and replacement losses.
Situation 2: The overall score is relatively low,
due to not inspecting finished products and not
dealing with returned goods, resulting in higher
ove and replacement losses.
Situation 2: The overall score is relatively low,
due to not inspecting finished products and not
dealing with returned goods, resulting in higher
overall costs.
Situation 3: Although the scores are

expenses.

Economic Society and Humanities Vol. 1 No. 10, 2024

processing returned goods lead to increased total based on effective termin

expenses. [D]. Southern Medical

In summary, after establishing a model using DOI:10.27003/d Economic Society and Humanities Vol. 1 No. 10, 2024

processing returned goods lead to increased total

In summary, after establishing a model using

In summary, after establishing a model using

dynamic programming, Monte Economic Society and Humanities Vol. 1 No. 10, 2024

processing returned goods lead to increased total

the summary, after establishing a model using

ID. Southern Med

dynamic programming, Monte Carlo methods,

[2] Man Xi **Economic Society and Humanities Vol. 1 No. 10, 2024**

processing returned goods lead to increased total

In summary, after establishing a model using

ID. Southern Medical

In summary, after establishing a model using

D **Economic Society and Humanities Vol. 1 No. 10, 2024**

processing returned goods lead to increased total based on effec

expenses. [D]. Southern

In summary, after establishing a model using DOI:10.27003.

dynamic programm **Economic Society and Humanities Vol. 1 No. 10, 2024**

processing returned goods lead to increased total

and the summary, after establishing a model using

ID. Southern Medical I

In summary, after establishing a model u **Economic Society and Humanities Vol. 1 No. 10, 2024**

processing returned goods lead to increased total

expenses. [D]. Southern Medica

expenses. [D]. Southern Medica

expenses. [D]. Southern Medica

and the entropy weig **Economic Society and Humanities Vol. 1 No. 10, 2024**

processing returned goods lead to increased total

In summary, after establishing a model using

ID. Southern Medic

In summary, after establishing a model using

ID. **Economic Society and Humanities Vol. 1 No. 10, 2024**

processing returned goods lead to increased total

In summary, after establishing a model using DOI:10.27003/d. c:

dynamic programming, Monte Carlo methods, [2] Man Economic Society and Humanities Vol. 1 No. 10, 2024

processing returned goods lead to increased total

In summary, after establishing a model using

ID]. Southern Medi

dynamic programming, Monte Carlo methods,

[2] Man X Economic Society and Humanities Vol. 1 No. 10, 2024

processing returned goods lead to increased total

In summary, after establishing a model using

ID. Southern Medical U

and the entropy weight method for analysis and t **Example 1990** and **Example 1990** and **Example 1990** based on effective terminal processing returned goods lead to increased total ln summary, after establishing a model using DOI:10.27003/d. cnki.goj dynamic programming, processing returned goods lead to increased total

in summary, after establishing a model using

ID1. Southern Media

dynamic programming, Monte Carlo methods, [2] Man Xiaohu. Research

and the entropy weight method for an expenses. [D]. Southern Medu

In summary, after establishing a model using

dynamic programming, Monte Carlo methods, [2] Man Xiaohu. Research

and the entropy weight method for analysis and

solution, we have conducted a In summary, atter establishing a model using

dynamic programming, Monte Carlo methods,

and the entropy weight method for analysis and

solution, we have conducted a comprehensive

dynamic

production, we have conducted a dynamic programming, Monte Carlo methods, [2] Man Xiaohu. Resear

solution, we have conducted a comprehensive dynamic

production senarios. Ultimately, it was found the appropriation

production scenarios. Ultimately, it w and the entropy weight method for analysis and extraction drilling of solution, we have conducted a comprehensive dynamic
production, and evaluation of six Equipment Enginees production scenarios. Ultimately, it was found solution, we have conducted a comprehensive

production senarios. Ultimately, it was found

that Scenario I performs best in terms of overall

that Scenario I performs best in terms of overall

cost control, making it suit analysis, optimization, and evaluation of six

production scenarios. Ultimately, it was found

that Scenario 1 performs best in terms of overall

cost control, making it suitable for production

al. Interactive

environmen production scenarios. Ultimately, it was found
that Scenario 1 performs best in terms of overall
cost control, making it suitable for production
environments that require strict quality control.
Based on the optimization r cost control, making it suitable for production
environments that require strict quality control.
Based on the optimization results, it is
recommended that enterprises prioritize the plan
from Scenario 1 in decision-making envronments that require strict quality control. Illumination

reconnmended that enterprises prioritize the plan

reconnmended that enterprises prioritize the plan

from Scenario 1 in decision-making to achieve [4] [4] Che Based on the optimization results, it is

reconstruction

recommended that enterprises prioritize the plan

the best economic benefits and quality control.

the best economic benefits and quality control.

average assiste recommended that enterprises proritize the plan

from Scenario 1 in decision-making to achieve

the best economic benefits and quality control.

Enterprises must adjust their decision-making

emethod of Bayesian r

plans f 1 m decision-making to achieve

the best economic benefits and quality control. average assisted sam

Enterprises must adjust their decision-making

plans flexibly according to different production

the best production man

the best economic benefits and quality control. average assisted sa

Enterprises must adjust their decision-making method of Bayesian

plans flexibly according to different production

conditions and ocst budgets, in order Enterprises must adjust their decision-making

plans flexibly according to different production

conditions and cost budgets, in order to achieve

the best production management outcomes,

Sciences, 1-25[2024-09-0

reduce plans flexibly according to different production

conditions and cost budgets, in order to achieve

the best production management outcomes,

For achieve sciences, 1-25[2024-0

reduce production losses, and bring significa conditions and cost budgets, in order to achieve

the best production management outcomes,

reduce production losses, and bring significant

Some set the company.

Some benefits to the company.

Some set the company.

Tuan the best production management outcomes,

reduce production losses, and bring significant [5] [5] Zhao Linna,

benefits to the company. This study focuses on the trace the subset on Bayesi

Conclusion: This study focuses o reduce production losses, and bring significant

benefits to the company.

S. **Conluding remarks**

S. **Conluding remarks**

Conclusion: This study focuses on the

multi-stage, multi-scenario decision-making disaster,2020,39 benefits to the company.

S. **Conluding remarks**

Conclusion: This study focuses on the method[J].

Heaven anisotrom and best on Bayesian

multi-stage, multi-scenario decision-making disaster,2020,39(05):4

optimization pr 5. Conluding remarks

conclusion: This study focuses on the

multi-stage, multi-scenario decision-making disaster,2020,39(05

optimization problems in the production and [6] [6] Yu Qiumin.

manufacturing process. Advanced **S. Conluding remarks**

conclusion: This study focuses on the method[J].Heavy

multi-stage, multi-scenario decision-making disaster, 2020,39(05):45

optimization problems in the production and [6] [6] Yu Qiumin. Rese

man Conclusion: This study focuses on the method[J].Heavy
multi-stage, multi-scenario decision-making disaster, 2020,39(05):451-46
optimization problems in the production and [6] [6] Yu Qiumin. Research
manufacturing process. multi-stage, multi-scenario decision-making disaster,2020,39(05):45
optimization problems in the production and [6] [6] Yu Qiumin. Res
manufacturing process. Advanced methods such model of industrial
as dynamic programming optimization problems in the production and

manufacturing process. Advanced methods such

and model of industria

simulation, and the entropy weight method have

simulation, and the entropy weight method have

been employ manutacturing process. Advanced methods such model of industria

simulation, and the entropy weight method have method[D].University

simulation, and the entropy weight method have

been employed to conduct an in-depth ana as dynamic programming, Monte Carlo

simulation, and the entropy weight method have

been employed to conduct an in-depth analysis

and modeling of the inspection and assembly

processes for components and finished product simulation, and the entropy weight method have method DJ. Univer

been employed to conduct an in-depth analysis and

modeling of the inspection and assembly china,2021.DOI:1

processes for components and finished products. been employed to conduct an in-depth analysis and nedeching of the inspection and assembly china,2021.DOI:10.27005/

processes for components and finished production [7] [7] Li Hao, Chen Zhitao, Li

scenarios[5], we have d and modeling of the inspection and assembly

processes for components and finished products. 1.002436.

By simulating six different production [7][7] Li Hao, Chen Zhitao,

seenarios[5], we have derived the optimal protecti processes for components and finished products.

By simulating six different production [7] [7] Li Hao, Chen Zhitao,

scenarios[5], we have derived the optimal protection of a new sy

sinception and assembly strategies, e By smulating six different production [7] [7] Li Hao, Chen Z

impection and assembly strategies, effectively tunnel management

incenting the defect rate and production costs. The multi-level samplin

reducing the defect environments. The research results indicate that Scheme 1 [8] [8] Yu Qinglin, Xiang Yu.

stands out in terms of cost control and defect cost prediction methate

rate reduction, and it has a high practical equipment. Dased on

applicatio

References

**COMPLE Academic Education
based on effective termination probabili --ty
[D]. Southern Medical University, 2021.
DOI:10.27003/d. cnki.gojyu.2021.001150.
Man Xiaohu. Research on the update of gas
extraction drilling equipme EXECUTE Academic Education**

based on effective termination probabili --ty

[D]. Southern Medical University, 2021.

DOI:10.27003/d. cnki.gojyu.2021.001150.

Man Xiaohu. Research on the update of gas

extraction drilling

- **CONFORM CONTROVIDED ACCOMOVED SETTLE PUBLISHING PLACE PUBLIC PUBLIC** 24
 Examplement Education

based on effective termination probabili --ty

[D]. Southern Medical University, 2021.

DOI:10.27003/d. cnki.gojyu.2021.001150.

[2] Man Xiaohu. Research on the update of gas

extraction drill **Extra Coloration**
 Extra Coloration
 Extra Coloration
 Extra Coloration
 Extra Coloration
 Extraction
 Extraction
 Extraction
 Extraction
 Extraction
 Extraction
 Extraction
 Extraction
 Extractio dynamicprogrammingmethod[J].China **Example 12**
 Examplement Education

based on effective termination probabili --ty

[D]. Southern Medical University, 2021.

DOI:10.27003/d. cnki.gojyu.2021.001150.

Man Xiaohu. Research on the update of gas

extraction -128.) **42**
 Example 12
 Constant Constant Publishing House

based on effective termination probabili --ty

[D]. Southern Medical University, 2021.

DOI:10.27003/d. cnki.gojyu.2021.001150.

[2] Man Xiaohu. Research on the upd
- **Alle Contrigue Control Acception**
 Alle Publishing House

based on effective termination probabili --ty

[D]. Southern Medical University, 2021.

DOI:10.27003/d. cnki.gojyu.2021.001150.

Man Xiaohu. Research on the upda illumination
reconstruction[J].Computer Engineering and **Examplement**

ID. Southern Medical University, 2021.

DOI:10.27003/d. cnki.gojyu.2021.001150.

Man Xiaohu. Research on the update of gas

extraction drilling equipment based on

dynamicprogramming

method [J].China

Equip Design,2023,44(4):1166-1173.) based on effective termination probabili --ty

[D]. Southern Medical University, 2021.

DOI:10.27003/d. cnki.gojyu.2021.001150.

[2] Man Xiaohu. Research on the update of gas

extraction drilling equipment based on

dynami
- [D]. Southern Medical University, 2021.
DOI:10.27003/d. cnki.gojyu.2021.001150.
Man Xiaohu. Research on the update of gas
extraction drilling equipment based on
dynamicprogrammingmethod[J].China
Equipment Engineering,2024, DOI:10.27003/d. cnkt.gojyu.2021.001150.

Man Xiaohu. Research on the update of gas

extraction drilling equipment based on

dynamicprogrammingmethod[J].China

Equipment Engineering,2024,(14):126

-128.)

Wang Jingwen, Lian Man Xiaohu. Research on the update of gas
extraction drilling equipment based on
dynamicprogrammingmethod[J].China
Equipment Engineering,2024,(14):126
-128.)
Wang Jingwen, Liang Xiao, Wang Niting, et
al. Interactive Monte extraction drilling equipment based on
dynamicprogrammingmethod[J].China
Equipment Engineering,2024,(14):126
-128.)
Wang Jingwen, Liang Xiao, Wang Niting, et
al. Interactive Monte Carlo global
illumination super-resolution Sciences, 1-25^[2024-09-07]. Equipment Engineering, 2024, (14):126

-128.)

[3] Wang Jingwen, Liang Xiao, Wang Niting, et

al. Interactive Monte Carlo global

illumination

reconstruction[J].Computer Engineering and

Design, 2023, 44(4):1166-1173.)

[-128.)
Wang Jingwen, Liang Xiao, Wang Niting, et
al. Interactive Monte Carlo global
illumination super-resolution
reconstruction[J].Computer Engineering and
Design,2023,44(4):1166-1173.)
[4] Chen Qianru, He Jianfeng. Resea Wang Jingwen, Liang Xiao, Wang Niting, et

al. Interactive Monte Carlo global

illumination super-resolution

reconstruction[J].Computer Engineering and

Design,2023,44(4):1166-1173.)

[4] Chen Qianru, He Jianfeng. Researc al. Interactive Monte Carlo global
illumination super-resolution
reconstruction[J].Computer Engineering and
Design,2023,444):1166-1173.)
[4] Chen Qianru, He Jianfeng. Research on
average assisted sampling estimation
method Design, 2023, 44(4):1166-1173.)

[4] [4] Chen Qianru, He Jianfeng. Research on

average assisted sampling estimation

method of Bayesian model under the

background of big data[J/OL].Systems

Science and Mathematical

Scie
- method[J].Heavy rain disaster,2020,39(05):451-461.)
- [4] Chen Qianru, He Jianteng. Research on
average assisted sampling estimation
method of Bayesian model under the
background of big data[J/OL].Systems
Science and Mathematical
Sciences,1-25[2024-09-07].
[5] Zhao Linna, Yao average assisted sampling estimation
method of Bayesian model under the
background of big data[J/OL].Systems
Sciences and Mathematical
Sciences,1-25[2024-09-07].
[5] Zhao Linna, Yao Mengying, Gong
Yuanfa, et al. Research o method of Bayesian model under the
background of big data[J/OL].Systems
Science and Mathematical
Sciences,1-25[2024-09-07].
[5] Zhao Linna, Yao Mengying, Gong
Yuanfa, et al. Research on the revision of
typhoon rainstorm fo and Technology of China,2021.DOI:10.27005/d.cnki.gdzku.202 1.002436. [5] [5] Zhao Linna, Yao Mengying, Gong

Yuanfa, et al. Research on the revision of

typhoon rainstorm forecast of "Lekima"

based on Bayesian model averaging

method[J].Heavy rain

disaster,2020,39(05):451-461.)

[6] [6] Yuanta, et al. Research on the revision of
typhoon rainstorm forecast of "Lekima"
based on Bayesian model averaging
method[J].Heavy rain
disaster,2020,39(05):451-461.)
[6] Yu Qiumin. Research on reliability
model of indust typhoon rainstorm forecast of "Lekima"
based on Bayesian model averaging
method[J].Heavy rain
disaster,2020,39(05):451-461.)
[6] Yu Qiumin. Research on reliability
model of industrial software based on
Bayesian model avera based on Bayesian model averaging

method[J].Heavy rain

disaster,2020,39(05):451-461.)

[6] Yu Qiumin. Research on reliability

model of industrial software based on

Bayesian model averaging

method[D].University of Elec method[J].Heavy

disaster,2020,39(05):451-461.)

[6] [6] Yu Qiumin. Research on reliability

model of industrial software based on

Bayesian model averaging

method[D].University of Electronic Science

and Technology of

C disaster, 2020, 39(05): 451-461.)

[6] Yu Qiumin. Research on reliability

model of industrial software based on

Bayesian model averaging

method [D]. University of Electronic Science

and Technology of

China, 2021. DOI: [6] Yu Qumnn. Research on reliability
model of industrial software based on
Bayesian model averaging
method[D].University of Electronic Science
and Technology of
China,2021.DOI:10.27005/d.cnki.gdzku.202
1.002436.
7] Li Hao model of industrial software based on
Bayesian model averaging
method[D].University of Electronic Science
and Technology of
China,2021.DOI:10.27005/d.cnki.gdzku.202
1.002436.
7] Li Hao, Chen Zhitao, Li Peng, et al. Fire
pr
-
- Equipment,2024,45(08):78-82.) method DJ. University of Electronic Science

and Technology of

China, 2021. DOI:10.27005/d.cnki.gdzku. 202

1.002436.

[7] [1 Li Hao, Chen Zhitao, Li Peng, et al. Fire

protection of a new system of highway

tunnel manage
- and Technology of
China,2021.DOI:10.27005/d.cnki.gdzku.202
1.002436.
[7] Li Hao, Chen Zhitao, Li Peng, et al. Fire
protection of a new system of highway
tunnel management based on Monte Carlo
multi-level sampling.
[8] Yu Q China, 2021.DOI:10.27005/d.cnki.gdzku.202
1.002436.
7] Li Hao, Chen Zhitao, Li Peng, et al. Fire
protection of a new system of highway
tunnel management based on Monte Carlo
multi-level sampling.
8] Yu Qinglin, Xiang Yu. R 1.002436.

[7] Li Hao, Chen Zhitao, Li Peng, et al. Fire

protection of a new system of highway

tunnel management based on Monte Carlo

multi-level sampling.

[8] Yu Qinglin, Xiang Yu. Research on R&D

cost prediction met [7] L1 Hao, Chen Zhitao, L1 Peng, et al. Fire
protection of a new system of highway
tunnel management based on Monte Carlo
multi-level sampling.
8] Yu Qinglin, Xiang Yu. Research on R&D
cost prediction method of medical
eq Research,2024,(08):18-28.) tunnel management based on Monte Carlo

multi-level sampling.

[8] [8] Yu Qinglin, Xiang Yu. Research on R&D

cost prediction method of medical

equipment based on Monte Carlo

simulation[J].Medical and Health

Equipment,2 multi-level sampling.

8] Yu Qinglin, Xiang Yu. Research on R&D

cost prediction method of medical

equipment based on Monte Carlo

simulation[J].Medical and Health

Equipment,2024,45(08):78-82.)

[9] Zhang Jialun, Song Xi
- Economics,2024,(07):256-258.)