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Abstracts: In this paper, the variable
fractional derivative model was used to
simulate the structure of viscoelastic
polyethylene terephthalate (PET) films. the
shift Legendre polynomial algorithm is used
to directly solve the equation of motion in
the time domain, and the nonlinear dynamic
response of the fractional viscoelastic film is
reliably estimated. Numerical examples
demonstrate the reliability and accuracy of
the proposed strategy, and the displacement
of thin films with different aspect ratios
under simple harmonic loading is
numerically simulated.
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1. Introduction
PET film is widely used in packaging,
electronics, medical, construction and other
fields, because of its high transparency, barrier,
flexibility and environmental protection, it has
become the preferred material for food
packaging, electronic product protective film,
medical equipment and building waterproofing
membrane and other industries, showing its
diversity and importance in modern industry.
PET film is generally produced by roller-to-
roller manufacturing, which is an advanced
method of manufacturing electronic products
with high production efficiency and excellent
performance [1]. The film is conveyed through
a drum during the production process and is
used to achieve printing, coating and other
processes. the pattern is continuously printed
on the film on multiple rollers and registered.
the process can lead to uneven surface
distribution and nonlinear vibrations of the
moving film, which may even affect the
quality of the flexible product. Therefore, it is

critical to accurately predict the nonlinear
dynamics of mobile membranes to meet the
stringent requirements of flexible
manufacturing. the dynamics of moving
materials has also been of interest to
researchers [2].
Many scholars have studied the film: Jimei Wu
et al. [3] explored the complex relationship
between the elastic modulus and vibration
characteristics of PET films in motion at
different temperatures, revealed the influence
of thermoviscoelastic coupling effect on the
nonlinear vibration behavior, and studied the
influence of film width, amplitude and
frequency of external excitation, transmission
speed, ambient temperature, system damping
and viscoelastic coefficient on the nonlinear
vibration of moving films. Zuocai Dai et al. [4]
performed a dynamic analysis of the damped
vibration of a lattice cylindrical shell of a
lattice cylindrical shell such as a grid filled
with viscoelastic foam perfectly.
Most of the current studies are based on
integer-order and fractional-order models to
establish governing equations, and then
numerically simulate some physical
phenomena, which cannot eliminate the error
between the actual material properties and the
experimental results [5]. However, for a
composite flexible substrate such as PET, it is
highly likely that large deformation will occur
during the production process [6]. Therefore, a
model that takes into account the
viscoelasticity and large deformation of PET
film is needed, so that we can more accurately
simulate the physical phenomena in the
production process, so as to have a beneficial
impact on production. In order to describe the
complex dynamic behavior of elastic materials
in different working environments, fractional-
order models and variable-order models that
can better describe the memory properties of
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materials compared with traditional models
have emerged. In this paper, we are committed
to the dynamic analysis of thin films on rollers
using a variational fractional order model.
The structure of this paper is as follows:
Section 2 establishes the partial differential
governing equations for variable fraction films.
Section 3 converts the governing equations of
thin films into matrix form based on the
differential operation matrix of the shifted
Legendre polynomial. Section 4 gives error
analysis and mathematical examples of
algorithms. Section 5 gives the conclusion of
this paper.

2. Establishment of Nonlinear Differential
Governing Equations for Viscoelastic
Microbeams
In the manufacturing process of the film, it is
assumed that the film is uniformly continuous,
follows elasticity and isotropy, and is not
affected by bending stiffness and shear forces
due to its light weight and soft properties [7], in
addition, the large deformation assumption
should be satisfied. That is, compared with the
original size, the deformation of the film under
stress cannot be ignored. Figure 1 is a
schematic representation of a viscoelastic
rectangular film under external excitation. The
membrane has a length of�and a width of�and
a thickness of ℎ , external incentives
for �. ��� �� , and the film is delivered at
velocity�. The governing equations of the thin
film can be formulated as:
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where� is the density of the membrane. �� is
the variable axial tension, � indicates lateral
displacement.
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introduced:
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Boundary conditions can be expressed as:
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The initial condition can be expressed as [8]:
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Figure 1. Schematic Diagram of a Thin Film
at Simple Harmonic Forces

3. Functional Approximation of The Shift
Legendre Polynomial
Definition 1: The Legendre polynomial,
defined on interval 0,1 , is expressed as:
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Where � = 0,1, . . . , �, � ∈ 0,1 .
The column vector � � is constituted by the
Legendre polynomial on the interval 0,1 , and
it can be expressed as
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Where�(�) = [1, �, ⋯, ��]�,
� is the Legendre polynomial coefficient
matrix:
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Extending the Legendre polynomial from the
interval 0,1 to 0, � yields the shifted
Legendre polynomial:
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Where � = 0,1, . . . , �, � ∈ 0, � .
At this point, � � can be represented by the
displaced Legendre multinomial:
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�is the matrix of shifted Legendre polynomial
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The governing equation (2) for the thin film
can be expressed as a matrix of variable-order
differential operators:
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differential operator matrix of the shifted
Legendre polynomial. �� is the first-order
differential operator matrix of the shifted
Legendre polynomial with respect to �.

4. Numerical Examples
In this section, it should be noted in advance

that the parameters in numerical studies are
arbitrary values and have no actual physical
significance. Numerical calculations are
illustrated in the following equation:
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The boundary conditions are the same as above.
Among them are: � � = 1 − 0.75�, � ∈
0,1 , � ∈ 0,1 .
� �, �, � = 2�2 1 − � 2�2 1 − � 2

+ 2� 2� − 6�2 + 4�3 �2 1
− � 2 + (2� − 6�2

+ 4�3)�2(1 − �)22� + 0.35
∗ (2 − 12� + 12�2)�2(1
− �)2�2

−�(2 − 12� + 12�2)�2(1 − �)2�2 − [(2�
− 6�2 + 4�3)�2(1
− �)2�2]2(2 − 12�
+ 12�2)�2(1 − �)2�2

−[�2(� − �)2(2� − 6�2 + 4�3)�2]2(2 − 12�
+ 12�2)�2(1 − �)2�2 − [�2(�
− �)2(2� − 6�2

+ 4�3)�2]2�2(1 − �)2(2
− 12� + 12�2)�2

−[(2� − 6�2 + 4�3)�2(1 − �)2�2]2�2(1
− �)2(2 − 12� + 12�2)�2

−[(2� − 6�2 + 4�3)�2(1 − �)2]2(2 − 12�
+ 12�2)�2(1

− �)2 � 7
� 7 − �� �(6−��)

− [�2(1 − �)2(2� − 6�2

+ 4�3)]2(2 − 12�
+ 12�2)�2(1

− �)2 � 7
� 7 − �� �(6−��)

−[�2(1 − �)2(2� − 6�2 + 4�3)]2�2(1 −
�)2(2 − 12� + 12�2) � 7

� 7−��
�(6−��) − [(2� −

6�2 + 4�3)�2(1 − �)2]2�2(1 − �)2(2 −
12� + 12�2) � 7

� 7−��
�(6−��) The exact solution

Industry Science and Engineering Vol. 1 No. 10, 2024

60



of the equation is:
� �, �, � = �2 1 − � 2�2 1 − � 2�2 (9)

When � = 2 , the shift Legendre polynomial
algorithm is used to solve the equation (2). the
numerical solution was performed using
MATLAB programming and coordination
method. �� �, � is the numerical solution,
� �, � is the exact solution, and � �, � is the
absolute error:

� �, � = � �, � − �� �, � (10)

Fig. 2 a-c are the analytical solution, numerical
solution and absolute error of Eq. (8),
respectively.
As can be clearly seen from Figure 2, the
numerical solution is extremely accurate. the
effectiveness and accuracy of the shift
Legendre polynomial algorithm are verified.
At the same time, it is also proved that the
algorithm is suitable for the dynamic analysis
of variable fractional viscoelastic films.

(a)Numerical solution (b)Real solution (c)absolute error
Figure 2. Solution of a Numerical Study

5. Conclusion
In this paper, the variable fractional nonlinear
differential equations for viscoelastic films are
established, and a numerical algorithm for
solving the nonlinear variable fractional
differential equations is proposed. This also
lays the theoretical foundation for the
development of more robust and efficient thin
film structures.
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