

Autonomous Navigation and Obstacle Avoidance of UAVs Based
 Autonomous Navigation and Obstacle Avoidance of UAVs Based
 **Autonomous Navigation and Obstacle Avoidance of UAVs Based

on Deep Reinforcement Learning

Xinyu FREE Academic Education**

Signal Development
 on Deep Reinforcement Learning
 on Deep Reinforcement Learning

Xinyuan Wang*
 Corresponding author
 Corresponding author **Xinyuan Wang**
 Mutonomous Navigation and Obstacle Avoidance of UAVs Based
 **Autonomous Navigation and Obstacle Avoidance of UAVs Based

on Deep Reinforcement Learning

Xinyuan Wang^{*}
** *Department of Transportation, Nan* **Examplement**
 4)
 **and Obstacle Avoidance of UAVs B:

Reinforcement Learning**

Xinyuan Wang*
 g University of Aeronautics and Astronautics, Nanjing,

**Corresponding author*
 i, the developed within logistics, agri

International Conference on Social Development

and Intelligent Technology (SDIT2024)
 Autonomous Navigation and Obstacle Avoidance of
 On Deep Reinforcement Learning

Xinyuan Wang*
 Department of Transportation, Nanj **and Intelligent Technology (SDIT2024)**
 Autonomous Navigation and Obstacle Avoidance
 on Deep Reinforcement Learning

Xinyuan Wang*
 Department of Transportation, Nanjing University of Aeronautics and Astro

*Corres **Autonomous Navigation and Obstacle Avoidance of I

on Deep Reinforcement Learning

Xinyuan Wang*

Department of Transportation, Nanjing University of Aeronautics and Astronautic

*Corresponding author

Abstract: This pape Autonomous Navigation and Obstacle Avoidance of 1**
 on Deep Reinforcement Learning
 *Ninyuan Wang**
 Department of Transportation, Nanjing University of Aeronautics and Astronauti

*Corresponding author
 Abstract: T **limitations on Deep Reinforcement Learning**
 limitations of Transportation, Nanjing University of Aeronautics and Astronaut

*Corresponding author
 Abstract: This paper studies the developed within logistics

autonomo **Surface Avoidance Surface CENT CENT CENT CENT CONTROLLER CAT THIS**
 Surface and Astronautics
 of Aeronautics and Astronautics
 **autonomous navigation and obstacle developed within logistics, and

autonomous navigatio Sunyuan Wang***

Department of Transportation, Nanjing University of Aeronautics and Astronaut

*Corresponding author
 Abstract: This paper studies the developed within logistics

autonomous navigation and obstacle relie **Contributed Alternation Controlling Controlling Controlling Chiversity of Aeronautics and Astro^{*} Corresponding author

Abstract:** This paper studies the developed within loginary
 autonomous navigation and obstacle r **Examplement of Transportation, Nanjing University of Aeronautics and

*Corresponding author

*Corresponding author

Abstract:** This paper studies the developed with

autonomous navigation and obstacle relief, and

avoida **Learning Conversity of Aeronatius and Astronaution**
 learning the the developed within logistics,
 autonomous navigation and **obstacle** relief, and national
 avoidance technology of UAVs based on
 learning analyz Performally and Corresponding aution
 Perceive the surrounding autonomous navigation and obstacle relief, and n

avoidance technology of UAVs based on achieving self-a

deep reinforcement learning, analyzes the avoidan Abstract: This paper studies the developed within logistics,
autonomous navigation and obstacle relief, and national c
avoidance technology of UAVs based on
deep reinforcement learning, analyzes the avoidance in UAVs still Abstract: This paper studies the developed within logistics
autonomous navigation and obstacle relief, and national
avoidance technology of UAVs based on
deep reinforcement learning, analyzes the avoidance in UAVs still fi Abstract: Ins paper studies the developed within
autonomous navigation and obstacle relief, and na
avoidance technology of UAVs based on achieving self-ac-
limitations of traditional navigation and especially with
obstacle **Example 10 increase the autonomous increase the autonomous increase the autoionious deep reinforcement learning, analyzes the avoidance in UAVs in the obstacle avoidance methods, and proposes a feature environment s Example 18 and 18** deep reinforcement tearning, analyzes the

divinations of traditional navigation and

dobstacle avoidance methods, and proposes a

feature environments

solution to optimize the path planning and

concepts

obstacle avoida **and algorithms of traditional flavigation** and especially with obstacle avoidance methods, and proposes a feature environ both and algorithms and abstacle avoidance of UAVs in complex usually performed environments throug **leading and**
 leading and
 solution to optimize the path planning and
 obstacle avoidance of UAVs in complex
 learning. Deep reinforcement learning and
 learning. Deep reinforcement learning can
 **learning. Deep botacle avoidance of UAVs in complet and particular and obstacle avoidance of UAVs in complete avoid the exerce is usily performe quite

environments through deep reinforcement** environments and cannot
 larning. Deep r **particular,** an in-depth analysis is
 particular, and complexe and stational entirement
 entirements through deep reinforcement learning can
 particular, and interpentival entirement
 particular, and significantly conducted the surviviron and algorithm perceive the surviviron and the survivironment the survivironment environment environment environment environment environment environment environment tend
flight path in real time, convergence the surrounding environment in the surrounding environment price the the surrounding environment that in environment equilibrium the medicine, and significantly mavigation and obstacles and significantly mavi perceive the surrounding environment

through autonomous learning, adjust the

flight path in real time, avoid static and

flight path in real time, avoid static and

potential in achieving eff

dynamic obstacles, and sign **algorithm in real time**, and state and state and potential in achieving efflight path and dynamic obstacles, and significantly navigation and obstacle a improve the autonomy and task execution through autonomously lear ef **ingnit pain in real time, avoid static and by the procedual in achievity

improve the autonomy and task execution**
 improve the autonomy and task execution through autonomous
 efficiency of UAVs. This paper

systemat dynamic obstactes, and signincantly havigation and obstacte average entronomy and task execution through attomomously learn efficiency of UAVs. This paper strategies [2].

systematically explores the core concepts Traditio **Enciency** of UAVs. This paper and application prove the autonomy and task execution

systematically explores the core concepts Traditional navigation is

and algorithms of deep reinforcement simultaneous localizatic

lear encency of UAVs. This paper

systematically explores the core concepts Traditional navigation

and algorithms of deep reinforcement

learning, as well as its application in UAV

navigation and obstacle avoidance. In

parti **broad algorithms** of deep reinforcement
 and algorithms of deeper inforcement
 broad algorithms, all depend
 broad algorithms, and **obstacle** avoidance. In
 provide and obstacle avoidance. In
 broad and obstacle and agorithms of deep reinforcement
 rearning, as well as its application in UAV
 ravigation and obstacle avoidance. In
 ravigation and obstacle avoidance. In
 ravigation environmental perception,
 expansively ex **tasks.** particular, an in-deptite analysis is

conducted on environmental maps, which convergence and stability of dynamic

convergence and stability of dynamic

obstacle avoidance, and optimization of

algorithm performance of im Fortune of the stability of dynamic convergence and stability of dynamic obstacle avoidance, and optimization of reduce dependence algorithm performance, emphasizing the systems through many dimportance of improving the re **EXECUTE CONVERGINGLE AVOIDED**
 Algorithm performance, emphasizing the systems through
 Algorithm in propertional continuous
 Avoid and optimization of reduce depende
 Avoid and propertional continuous
 Avoid appl Importance of Improving the real-
performance of the algorithm
autonomous flight of UAVs,
demonstrating the technical advantages
broad application prospects of
reinforcement learning in UAV naviga
tasks.
Keywords: UAV Navi

Flight

**CE Avoidance of UAVs Based

Sending House**
 **CE Avoidance of UAVs Based

ment Learning**

Magnetics, agriculture, disaster
 developed within logistics, agriculture, disaster

relief, and national defense. However,

achie **Examplement Conserved Conserved Conserved Service Ser Calc Avoidance of UAVs Based

ment Learning**
 Aeronautics and Astronautics, Nanjing, China
 tauthor

developed within logistics, agriculture, disaster

relief, and national defense. However,

relief, and national defe **challen Control COMACS Sased

ment Learning**

Meronautics and Astronautics, Nanjing, China

(author

developed within logistics, agriculture, disaster

relief, and national defense. However,

achieving self-acting navigat **next Learning**
 Solution
 Aeronautics and Astronautics, Nanjing, China
 Constant Complex Complex Assement Complex
 Complex
 Complex
 Complex
 Constant Complex
 Constant Complex
 Constant Constant Complex Example 18 Example 18 Astronautics, Nanjing, China
 Astronautics and Astronautics, Nanjing, China

developed within logistics, agriculture, disaster

relief, and national defense. However,

achieving self-acting navig **Example 3**
 Aeronautics and Astronautics, Nanjing, China
 author
 **developed within logistics, agriculture, disaster

relief, and national defense. However,

achieving self-acting navigation and obstacle

avoidance in Example 18**
 Example 18 Example 18
 Example 18
 Example 20
 Example 20
 Example 18
 Example 20
 Example 20 *Aeronautics and Astronautics, Nanying, China*
 author
 author
 *developed within logistics, agriculture, disaster

relief, and national defense. However,

achieving self-acting navigation and obstacle

avoidance in UA* relation and model and model and model and the production and the production and the avoidance in UAVs still faces great challenges, especially within dynamic and complex feature environments. Conventional rule-based navig developed within logistics, agriculture, disaster
relief, and national defense. However,
achieving self-acting navigation and obstacle
avoidance in UAVs still faces great challenges,
especially within dynamic and complex
f developed within logistics, agriculture, disaster
relief, and national defense. However,
achieving self-acting navigation and obstacle
avoidance in UAVs still faces great challenges,
sepecially within dynamic and complex
f developed within logistics, agriculture, disaster
relief, and national defense. However,
achieving self-acting navigation and obstacle
avoidance in UAVs still faces great challenges,
especially within dynamic and complex
f reliet, and national detense. However,
achieving self-acting navigation and obstacle
avoidance in UAVs still faces great challenges,
especially within dynamic and complex
feature environments. Conventional rule-based
navig achieving selt-acting navigation and obstacle
avoidance in UAVs still faces great challenges,
especially within dynamic and complex
feature environments. Conventional rule-based
navigation and obstacle avoidance methods
us avoidance in UAVs still faces great challenges,
especially within dynamic and complex
feature environments. Conventional rule-based
navigation and obstacle avoidance methods
usually perform quite poorly in these
environmen especially within dynamic and complex
feature environments. Conventional rule-based
navigation and obstacle avoidance methods
usually perform quite poorly in these
environments and cannot cope with the
unpredictability and feature environments. Conventional rule-based
navigation and obstacle avoidance methods
usually perform quite poorly in these
environments and cannot cope with the
unpredictability and complexity of such an
environment [1] navigation and obstacle avoidance methods
usually perform quite poorly in these
environments and cannot cope with the
unpredictability and complexity of such an
environment [1]. As a frontier in artificial
intelligence, DR

1.1 Research Background and Importance
 1.1 Research Packground Scription Scription is exampled to the example the technical advantages and realized. For
 1.1 Research Background and Importance
 1.1 Research Backgro demonstrating the technical advantages and

broad application prospects of deep

reinforcement learning in UAV navigation

stasks.

Exercition of inde

exceptionally capa

challenge brought is

exceptionally capa

challeng and application prospects of deep

reinforcement learning in UAV navigation

tasks.

Exported: UAV Navigation; Deep

challenge brought by a

challenge brought by a

challenge brought by a

challenge brought by a

challenge Frame Teams and New Yorking in UAV and the probability content than the exceptionally cap

Exerpediance; UAV Navigation; Deep environment. The

Reinforcement Learning; Obstacle DRL in UAVs

Avoidance; Path Planning; Autono usually perform quite poorly in these
environments and cannot cope with the
unpredictability and complexity of such an
environment [1]. As a frontier in artificial
intelligence, DRL has recently shown great
potential in ac environments and cannot cope with the
unpredictability and complexity of such an
environment [1]. As a frontier in artificial
intelligence, DRL has recently shown great
potential in achieving efficient autonomous
navigatio unpredictability and complexity of such an
environment [1]. As a frontier in artificial
intelligence, DRL has recently shown great
potential in achieving efficient autonomous
navigation and obstacle avoidance for UAVs
thro environment [1]. As a frontier in artificial
intelligence, DRL has recently shown great
potential in achieving efficient autonomous
navigation and obstacle avoidance for UAVs
through autonomously learning and optimizing
st intelligence, DRL has recently shown great
potential in achieving efficient autonomous
navigation and obstacle avoidance for UAVs
through autonomously learning and optimizing
strategies [2].
Traditional navigation solution potential in achieving efficient autonomous
navigation and obstacle avoidance for UAVs
through autonomously learning and optimizing
strategies [2].
Traditional navigation solutions, including
simultaneous localization and navigation and obstacle avoidance for UAVs
through autonomously learning and optimizing
strategies [2].
Traditional navigation solutions, including
simultaneous localization and mapping
algorithms, all depend on high-preci through autonomously learning and optimizing
strategies [2].
Traditional navigation solutions, including
simultaneous localization and mapping
algorithms, all depend on high-precision
sensors and a large amount of computin strategies [2].
Traditional navigation solutions, including
simultaneous localization and mapping
algorithms, all depend on high-precision
sensors and a large amount of computing
resources to realize real-time updating of
 Traditional navigation solutions, including
simultaneous localization and mapping
algorithms, all depend on high-precision
sensors and a large amount of computing
resources to realize real-time updating of
environmental ma simultaneous localization and mapping
algorithms, all depend on high-precision
sensors and a large amount of computing
resources to realize real-time updating of
environmental maps, which is greatly limited
in practical us algorithms, all depend on high-precision
sensors and a large amount of computing
resources to realize real-time updating of
environmental maps, which is greatly limited
in practical use [3]. On the contrary, DRL may
reduce sensors and a large amount of computing
resources to realize real-time updating of
environmental maps, which is greatly limited
in practical use [3]. On the contrary, DRL may
reduce dependence on sophisticated sensor
syste resources to realize real-time updating of
environmental maps, which is greatly limited
in practical use [3]. On the contrary, DRL may
reduce dependence on sophisticated sensor
systems through mapping the sensor data of
UA environmental maps, which is greatly limited
in practical use [3]. On the contrary, DRL may
reduce dependence on sophisticated sensor
systems through mapping the sensor data of
UAVs into control signals directly and thus
h In practical use [3]. On the contrary, DRL may
reduce dependence on sophisticated sensor
systems through mapping the sensor data of
UAVs into control signals directly and thus
have the independent navigation and obstacle
 reduce dependence on sophisticated sensor
systems through mapping the sensor data of
UAVs into control signals directly and thus
have the independent navigation and obstacle
avoidance of complex three-dimensional space
rea systems through mapping the sensor data of
UAVs into control signals directly and thus
have the independent navigation and obstacle
avoidance of complex three-dimensional space
realized. For this unique solution to the
pro UAVs into control signals directly and thus
have the independent navigation and obstacle
avoidance of complex three-dimensional space
realized. For this unique solution to the
problem of independent navigation and
obstacle have the independent navigation and obstacle
avoidance of complex three-dimensional space
realized. For this unique solution to the
problem of independent navigation and
obstacle avoidance of UAVs, DRL is
exceptionally cap avoidance of complex three-dimensional space
realized. For this unique solution to the
problem of independent navigation and
obstacle avoidance of UAVs, DRL is
exceptionally capable of conquering the
challenge brought by a realized. For this unique solution to the
problem of independent navigation and
obstacle avoidance of UAVs, DRL is
exceptionally capable of conquering the
challenge brought by a complex and dynamic
environment. The success problem of independent navigation and
obstacle avoidance of UAVs, DRL is
exceptionally capable of conquering the
challenge brought by a complex and dynamic
environment. The successful application of
DRL in UAVs not only pr obstacle avoidance of UAVs, DRL is
exceptionally capable of conquering the
challenge brought by a complex and dynamic
environment. The successful application of
DRL in UAVs not only promotes the
development of automation t

COM
 COM
 COM
 COM
 COM
 COM
 COM
 **COMPENDE ENDISTING THE SURFER INTERED AND RESPONSION THE SURFER 1.2 Research Objectives

This study aims to explore the application of

deep reinforcement learning in drone**

1.2 Academic Education
 1.2 Research Objectives
 1.3 Re The method of the application

Conference on Section

academically valuable and have a wide range

of applications [5].

1.2 Research Objectives

This study aims to explore the application of

the mavigate through unknow
 Example Following House
 Example Following House
 Example 19 Accolemically valuable and have a wide range
 Example 19 Accolemically valuable and have a wide range
 Example 19 Accolemically there is also high compu Examplement Conforming Conforming Conforming Properties Conforming Properties and Intelligent and Intelligent and Intelligent and Intelligent and Intelligent and Intelligent avoidance ISO and Intelligent and Intelligent W Examplement Education
 Andemic Education
 Andemically valuable and have a wide range
 and Intelligent
 and Intelligent
 and Intelligent
 and Intelligent
 and Intelligent
 and Intelligent
 and Intelligent Examplemic Education
 Academic Education
 Academically valuable and have a wide range
 and Intelligent

academically valuable and have a wide range

Mile these technology

1.2 Research Objectives

This study aims t **Examplement Education**
 Environmental Properties
 Examplement Tech

academically valuable and have a wide range

algorithms like SLAM,

of applications [5].

1.2 Research Objectives

This study aims to explore the app **Examplement Education**
 Examplement Education
 Examplement Education
 Examplement Conference on Scand Intelligent Techn
 Examplement and have a wide range
 Examplement Conference on Scand Intelligent Techn
 Exa Examplementative ability and Solution
 Examplementative ability valuable and have a wide range and **Intelligent T**

of applications [5].
 1.2 Research Objectives and have a wide range algorithms like SLAN

mavigate t The state of applications [5].

academically valuable and have a wide range algorithms like S

of applications [5].

While these technology;

This study aims to explore the application of a device limitations

deep reinfor academically valuable and have a wide range

of applications [5].

1.2 Research Objectives

This study aims to explore the application of

This study aims to explore the application of

device limitations, especies

deep r of applications [5]. The avigate through unit of the set chinology

1.2 Research Objectives

This study aims to explore the application of a device limitations, esteep reinforcement learning in drone device limitations, an 1.2 Research Objectives

This study aims to explore the application of

deep reinforcement learning in drone

autonomous navigation and obstacle avoidance,

and propose a drone navigation and obstacle

avoidance strategy t 1.2 Research Objectives are also high com

This study aims to explore the application of alevice limitations

deep reinforcement learning in drone real-time process

autonomous navigation and obstacle avoidance,

avoidance This study aims to explore the application of

deep reinforcement learning in drone

arothomomus navigation and obstacle

and propose a drone navigation and obstacle

avoidance strategy that can adapt to complex

environm deep reinforcement learning in drone real-time processing
autonomous navigation and obstacle avoidance,
avoidance strategy that can adapt to complex
avoidance
environments. Specifically, this study will
Obstacle Avoidance autonomous navigation and obstacle avoidance,

and propose a drone navigation and obstacle

avoidance strategy that can adapt to complex

avoidance strategy that can adapt to complex

environments. Specifically, this study and propose a drone navigation and obstacle
avoidance strategy that can adapt to complex
environments. Specifically, this study will
solve the following key problems: first, how to Obstacle avoidance Techn
improve the path avoidance strategy that can adapt to complex

environments. Specifically, this study will

obstacle Avoidance Te

solve the following key problems: first, how to Obstacle avoidance tecl

improve the path planning ability o environments. Specifically, this study will
solve the following key problems: first, how to
disolve the path planning ability of drones
through environmental perception technology;
of UAVs, which
second, how to ensure the solve the tollowing key problems: first, how to Costacle avoidance technol
improve the path planning ability of drones
the composition technologies in the auto-
through environmental perception technology; second, how to e mprove the path planning ability of drones

second, how to ensue the convergence and

stability of deep reinforcement learning

approaches and

algorithms in dynamic obstacle environments;

and finally, how to optimize the through environmental perception technology; of UAVs, wi
second, how to ensure the convergence and categories: in
stability of deep reinforcement learning approaches a
algorithms in dynamic obstacle environments; avoidance Example to the provides and finally, how to optimize the performance and of deep reinforcement learning algorithms to solidance meth obstacle avoidance and finally, how to optimize the performance of deep reinforcement lea algorithms in dynamic obstacle environments;

and finally, how to optimize the performance

of deep reinforcement learning algorithms to

improve their efficiency in real-time

information from the pure

navigation tasks. mprove their enticlency in real-time

navigation tasks. This study will not only and thus avoiding observe

verify the effectiveness of the algorithm

through simulation, but also explore the future

development direction mavigation tasks. This study will not only
verify the effectiveness of the algorithm
through simulation, but also explore the future
development direction of deep reinforcement
learning in drone navigation, aiming to
provi verify the effectiveness of the algorithm
through simulation, but also explore the future method is fast and
development direction of deep reinforcement limited computing
learning in drone navigation, aiming to dynamic env

Technology

Example a new technical path for the intelligent

and automated development of drones.

1 and automated development of drones.

1 and automated development of drones.

2. **Current Status of Drone Autonomous**

1 Obstacle av provide a new technical path for the intelligent

and automated development of drones.
 2. Current Status of Drone Autonomous
 Navigation and Obstacle Avoidance based on the chinology
 2.1 Traditional Methods of Drone and automated development of drones.

2. **Current Status of Drone Autonomous**
 Cobstacle avoidance
 Cobstacle avoidance
 Cobstacle avoidance
 Cobstacle avoidance
 Cobstacle avoidance
 Cobstacle avoidance
 Cobs 2. Current Status of Drone Autonomous

Mavigation and Obstacle Avoidance

Technology

Technology

2.1 Traditional Methods of Drone planing a safe pare

technologies sucl

2.1 Traditional Methods of Drone global path-plan
 2. Current Status of Drone Autonomous

Technology

Technology

Technology

Technology

Traditional Methods of Drone

technologies such as SI

Autonomous Navigation

In the early days, drone autonomous

Autonomous Navigatio Navigation and Obstacle Avoidance planning a safe path in the dechologies such as

technology

2.1 Traditional Methods of Drone technology

Autonomous Navigation

In the early days, drone autonomous the purpose of na

mavi Technology

2.1 Traditional Methods of Drone

Autonomous Navigation

Autonomous Navigation

In the early days, drone autonomous

In the early days, drone autonomous

algorithm, for instance, or *i*

algorithm, for instance 2.1 Traditional Methods of Drone technologies such as SL

Autonomous Navigation

In the early days, drone autonomous

mavigation technology mainly depends on

some traditional navigation algorithms and

some traditional na 2.1 Traditional Methods of Drone global path-planning alge

Autonomous Navigation

In the early days, drone autonomous

mavigation technology mainly depends on

avoidance [11]. Such an ap

some traditional navigation algo **Autonomous Navigation**

In the early days, drone autonomous

navigation dechnology mainly depends on

some traditional navigation algorithms and

some traditional navigation algorithms and

more optimized obstacle a

sens In the early days, drone autonomous the purpose of navigation argume traditional navigation algorithms and some traditional arises the model sensor technologies. One of the classic complex environments, but methods represe navigation technology manily depends on avoidance [11]. Si
some traditional navigation algorithms and more optimized c
sensor technologies. One of the classic complex environm
methods represents navigation based on GPS com some traditional navigation algorithms and

sensor technologies. One of the classic

methods represents navigation based on GPS

and INS. These approaches provide very

and INS. These approaches provide very

accurate posi sensor technologies. One of the classic complex environments, but
methods represents navigation based on GPS computational cost. The up
accurate positioning and heading information
devices the colume-sepecially applied in methods represents navigation based on GPS

and INS. These approaches provide very

accurate positioning and heading information

by fusing GPS signals and IMU data, and are

long comput

widely applied in UAV navigation i and INS. These approaches provide very
accurate positioning and heading information
three-dimensional environment with the widely applied in UAV navigation in outdoor
open space [6]. However, GPS navigation in a learning h accurate positioning and heading information
we fusing GPS signals and IMU data, and are
widely applied in UAV navigation in outdoor
were proper space [6]. However, GPS navigation in a
clemning has received much
complex en by fusing GPS signals and IMU data, and are

widely applied in UAV navigation in outdoor

open space [6]. However, GPS navigation in a

complex environment with features such as an

due to the devel

urban canyon, forest,

International Conference on Social Development and Intelligent Technology (SDIT2024)

Academic Education
 Academic Education
 Academically valuable and have a wide range
 Academically valuable and have a wide range
 Academically valuable and have a wide range
 Academically valuable and have a wid Trational Conference on Social Development
 and Intelligent Technology (SDIT2024)

algorithms like SLAM, enabling UAVs to

navigate through unknown environments.

While these technologies are in wide use, there

are al rnational Conference on Social Development

and Intelligent Technology (SDIT2024)

algorithms like SLAM, enabling UAVs to

navigate through unknown environments.

While these technologies are in wide use, there

are also h **rnational Conference on Social Development**
 and Intelligent Technology (SDIT2024)

algorithms like SLAM, enabling UAVs to

navigate through unknown environments.

While these technologies are in wide use, there

are al **rnational Conference on Social Development**
 and Intelligent Technology (SDIT2024)

algorithms like SLAM, enabling UAVs to

navigate through unknown environments.

While these technologies are in wide use, there

are al rnational Conference on Social Development

and Intelligent Technology (SDIT2024)

algorithms like SLAM, enabling UAVs to

navigate through unknown environments.

While these technologies are in wide use, there

are also h rnational Conference on Social Development

and Intelligent Technology (SDIT2024)

algorithms like SLAM, enabling UAVs to

navigate through unknown environments.

While these technologies are in wide use, there

are also h rnational Conference on Social Development

and Intelligent Technology (SDIT2024)

algorithms like SLAM, enabling UAVs to

navigate through unknown environments.

While these technologies are in wide use, there

are also h **2.2 Classification and Comparison Schild Comparison**
 2.2 Classification of UAVs to
 2.2 Classification and the metal of the set echnologies are in wide use, there

are also high computing costs and hardware

device l **Trantional Conference on Social Development**
 Obstacle And Intelligent Technology (SDIT2024)

algorithms like SLAM, enabling UAVs to

navigate through unknown environments.

While these technologies are in wide use, the **Example 12**
 Conference on Social Development
 Conference on Social Development

algorithms like SLAM, enabling UAVs to

navigate through unknown environments.

While these technologies are in wide use, there

are als **and Intelligent Technology (SDIT2024)**
algorithms like SLAM, enabling UAVs to
navigate through unknown environments.
While these technologies are in wide use, there
are also high computing costs and hardware
device limita

algorithms like SLAM, enabling UAVs to
algorithms like SLAM, enabling UAVs to
avigate through unknown environments.
While these technologies are in wide use, there
are also high computing costs and hardware
device limitati algorithms like SLAM, enabling UAVs to
navigate through unknown environments.
While these technologies are in wide use, there
are also high computing costs and hardware
device limitations, especially in the need for
real-t may the through unknown environments.

While these technologies are in wide use, there

are also high computing costs and hardware

device limitations, especially in the need for

real-time processing of massive amounts of While these technologies are in wide use, there
are also high computing costs and hardware
device limitations, especially in the need for
real-time processing of massive amounts of
data to ensure flying safety for UAVs [8] are also high computing costs and hardware
device limitations, especially in the need for
real-time processing of massive amounts of
data to ensure flying safety for UAVs [8].
2.2 Classification and Comparison of
Obstacle device limitations, especially in the need for
real-time processing of massive amounts of
data to ensure flying safety for UAVs [8].
2.2 Classification and Comparison of
Obstacle Avoidance Technologies
Obstacle avoidance t real-time processing of massive amounts of
data to ensure flying safety for UAVs [8].
2.2 Classification and Comparison of
Obstacle Avoidance Technologies
Obstacle avoidance technology is one of the
key technologies in the data to ensure flying safety for UAVs [8].

2.2 Classification and Comparison of

Obstacle Avoidance Technologies

Obstacle avoidance technology is one of the

key technologies in the autonomous navigation

of UAVs, which 2.2 Classification and Comparison of

Obstacle Avoidance Technologies

Obstacle avoidance technology is one of the

key technologies in the autonomous navigation

of UAVs, which can be divided into two

categories: reactiv 2.2 Classification and Comparison of

Obstacle Avoidance Technologies

Obstacle avoidance technologies

Obstacle avoidance technology is one of the

key technologies in the autonomous navigation

of UAVs, which can be div **Obstacle Avoidance Technologies**

Obstacle avoidance technology is one of the

key technologies in the autonomous navigation

of UAVs, which can be divided into two

categories: reactive obstacle avoidance

approaches an Obstacle avoidance technology is one of the
key technologies in the autonomous navigation
of UAVs, which can be divided into two
categories: reactive obstacle avoidance
approaches and planning-based obstacle
avoidance meth key technologies in the autonomous navigation
of UAVs, which can be divided into two
categories: reactive obstacle avoidance
approaches and planning-based obstacle
avoidance methods. Normally, the reactive
obstacle avoidan of UAVs, which can be divided into two
categories: reactive obstacle avoidance
approaches and planning-based obstacle
avoidance methods. Normally, the reactive
obstacle avoidance methods would utilize
sensors for the purpo categories: reactive obstacle avoidance
approaches and planning-based obstacle
avoidance methods. Normally, the reactive
obstacle avoidance methods would utilize
sensors for the purpose of acquiring real-time
information f approaches and planning-based obstacle
avoidance methods. Normally, the reactive
obstacle avoidance methods would utilize
sensors for the purpose of acquiring real-time
information from the surrounding environment
and thus avoidance methods. Normally, the reactive
obstacle avoidance methods would utilize
sensors for the purpose of acquiring real-time
information from the surrounding environment
and thus avoiding obstacles simply based on
cer obstacle avoidance methods would utilize
sensors for the purpose of acquiring real-time
information from the surrounding environment
and thus avoiding obstacles simply based on
certain rule or strategy [9]. This kind of
m sensors for the purpose of acquiring real-time
information from the surrounding environment
and thus avoiding obstacles simply based on
certain rule or strategy [9]. This kind of
method is fast and suitable for scenarios

through simulation, but also explore the future

development direction of deep reinforcement

limited computing resource

lemaring in drome navigation, aiming to

provide a new technical path for the intelligent

and autom development direction of deep reinforcement

learning in drone navigation, aiming to

provide a new technical path for the intelligent

and automated development of drones.
 2. Current Status of Drone Autonomous
 2. Cur information from the surrounding environment
and thus avoiding obstacles simply based on
certain rule or strategy [9]. This kind of
method is fast and suitable for scenarios with
limited computing resources. But in a compl and thus avoiding obstacles simply based on
certain rule or strategy [9]. This kind of
method is fast and suitable for scenarios with
limited computing resources. But in a complex
dynamic environment, its performance is ve certain rule or strategy [9]. This kind of
method is fast and suitable for scenarios with
limited computing resources. But in a complex
dynamic environment, its performance is very
poor and it cannot predict the movement
 method is fast and suitable for scenarios with
limited computing resources. But in a complex
dynamic environment, its performance is very
poor and it cannot predict the movement
trajectory of obstacles effectively [10].
Ob limited computing resources. But in a complex
dynamic environment, its performance is very
poor and it cannot predict the movement
trajectory of obstacles effectively [10].
Obstacle avoidance with path planning, on the
oth dynamic environment, its performance is very
poor and it cannot predict the movement
trajectory of obstacles effectively [10].
Obstacle avoidance with path planning, on the
other hand, avoids an obstacle by first
planning poor and it cannot predict the movement
trajectory of obstacles effectively [10].
Obstacle avoidance with path planning, on the
other hand, avoids an obstacle by first
planning a safe path in advance. This class of
methods trajectory of obstacles effectively [10].

Obstacle avoidance with path planning, on the

other hand, avoids an obstacle by first

planning a safe path in advance. This class of

methods usually depends on map building

te Obstacle avoidance with path planning, on the
other hand, avoids an obstacle by first
planning a safe path in advance. This class of
methods usually depends on map building
technologies such as SLAM and couples
global pat other hand, avoids an obstacle by first
planning a safe path in advance. This class of
methods usually depends on map building
technologies such as SLAM and couples
global path-planning algorithms (Dijkstra's
algorithm, fo planning a sate path in advance. This class of
methods usually depends on map building
technologies such as SLAM and couples
global path-planning algorithms (Dijkstra's
algorithm, for instance, or A* algorithm) for
the pur methods usually depends on map building
technologies such as SLAM and couples
global path-planning algorithms (Dijkstra's
algorithm, for instance, or A* algorithm) for
the purpose of navigation and obstacle
avoidance [11]. technologies such as SLAM and couples
global path-planning algorithms (Dijkstra's
algorithm, for instance, or A* algorithm) for
the purpose of navigation and obstacle
avoidance [11]. Such an approach may design
more optimi global path-planning algorithms (Dijkstra's
algorithm, for instance, or A* algorithm) for
the purpose of navigation and obstacle
avoidance [11]. Such an approach may design
more optimized obstacle avoidance routes in
compl algorithm, for instance, or A* algorithm) for
the purpose of navigation and obstacle
avoidance [11]. Such an approach may design
more optimized obstacle avoidance routes in
complex environments, but it is at a very high
co the purpose of navigation and obstacle
avoidance [11]. Such an approach may design
more optimized obstacle avoidance routes in
complex environments, but it is at a very high
computational cost. The updating of maps in
real avoidance [11]. Such an approach may design
more optimized obstacle avoidance routes in
complex environments, but it is at a very high
computational cost. The updating of maps in
real time-especially in large-scale
three-d more optimized obstacle avoidance routes in
complex environments, but it is at a very high
computational cost. The updating of maps in
real time-especially in large-scale
three-dimensional environments-can result in
long c computational cost. The updating of maps in
real time-especially in large-scale
three-dimensional environments-can result in
long computational delays. Obstacle avoidance
technology based on deep reinforcement
learning has three-dimensional environments-can result in
long computational delays. Obstacle avoidance
technology based on deep reinforcement
learning has received much attention recently
due to the development of deep learning
techno long computational delays. Obstacle avoidance
technology based on deep reinforcement
learning has received much attention recently
due to the development of deep learning
technology. Such technology has prominent
advantage

Technologies

International Conference on Social Development and Intelligent Technology (SDIT2024)

International Conference on Social Development

and Intelligent Technology (SDIT2024)

there are still so many limitations. Firstly,

navigation and obstacle avoidance

technologies based on traditional sensors an immediat **International Conference on Social Development**
 and Intelligent Technology (SDIT2024)

there are still so many limitations. Firstly,

navigation and obstacle avoidance

technologies based on traditional sensors an imm **International Conference on Social Development**
 and Intelligent Technology (SDIT2024)

there are still so many limitations. Firstly,

transition probability

navigation and obstacle avoidance

technologies based on tr **International Conference on Social Development**
 and Intelligent Technology (SDIT2024)

there are still so many limitations. Firstly,

navigation and obstacle avoidance

technologies based on traditional sensors

perfo **International Conference on Social Development**
 and Intelligent Technology (SDIT2024)

there are still so many limitations. Firstly,

navigation and obstacle avoidance

technologies based on traditional sensors an imm **International Conference on Social Development**
 and Intelligent Technology (SDIT2024)

there are still so many limitations. Firstly,

navigation and obstacle avoidance

technologies based on traditional sensors an imm **International Conference on Social Development**

and Intelligent Technology (SDIT2024)

there are still so many limitations. Firstly,

transition probability $P(s)$

navigation and obstacle avoidance

perform very poor, i **International Conference on Social Development**
 and Intelligent Technology (SDIT2024)

there are still so many limitations. Firstly,

navigation and obstacle avoidance

technologies based on traditional sensors

or in **International Conference on Social Development**

and Intelligent Technology (SDIT2024)

there are still so many limitations. Firstly,

navigation and obstacle avoidance

technologies based on traditional sensors

an imme International Conference on Social Development

and Intelligent Technology (SDIT2024)

there are still so many limitations. Firstly,

navigation and obstacle avoidance

technologies based on traditional sensors an immedia **International Conference on Social Development**
 and Intelligent Technology (SDIT2024)

there are still so many limitations. Firstly,

navigation and obstacle avoidance

technologies based on traditional sensors and im **and Intelligent Technology (SDIT2024)**

there are still so many limitations. Firstly,

navigation and obstacle avoidance

technologies based on traditional sensors an immediate reward

perform very poor, including in com and interaction and obstacles methods based an immediate reward $r_i = R$
navigation and obstacle avoidance technologies based on traditional sensors an immediate reward $r_i = R$
perform very poor, including in computing the a there are still so many limitations. Firstly, transition probability $P(\text{envologies based on traditional sensors})$ an immediate reward r_i is
perform very poor, including in computing the agent is to find the op
resources and energy consumption, espe mavigation and obstacle avoidance
technologies based on traditional sensors
perform very poor, including in computing
resources and energy consumption, especially maximize the cumula
when flying drones are limited in size technologies based on traditional sensors and immediate countar
perform very poor, including in computing the agent is to find the op
resources and energy consumption, especially when flying drones are limited in size and perform very poor, including in computing

resources and energy consumption, especially

when flying drones are limited in size and

weight and hardly portable with

high-performance sensors [13]. Delays in

real-time pla resources and energy consumption, especially maximize the cumula

when flying drones are limited in size and G_t :

wigh-performance sensors [13]. Delays in

real-time planning due to high-velocity flying

could result in when flying drones are limited in size and

weight and hardly portable with

high-performance sensors [13]. Delays in

real-time planning due to high-velocity flying

could result in collision-risk conditions.

Second, mo weight and hardly portable with

high-performance sensors [13]. Delays in

real-time planing due to high-velocity flying

could result in collision-risk conditions. $Q(s, a_i) = r_i + \gamma \max_{a_{i\alpha}} Q(s_i, a_i)$

Second, most current obs high-performance sensors [13]. Delays in $G_t = \sum_{k=1}^{\infty}$

real-time planning due to high-velocity flying

could result in collision-risk conditions. Second, most current obstacle avoidance

methods lack the ability to h real-time planning due to high-velocity flying

could result in collision-risk conditions.

Second, most current obstacle avoidance

methods lack the ability to handle dynamic used to balance

obstacles. Third, for traini could result in collision-risk conditions.

Second, most current obstacle avoidance

membods lack the ability to handle dynamic

obstacles. Third, for training in an long-term benefits. T

environment with complex conditi Second, most current obstacle avoidance

methods lack the ability to handle dynamic

obstacles. Third, for training in an

environment with complex conditions, most

environment learning obstacle

environment learning obs methods lack the ability to handle dynamic

obstacles. Third, for training in an long-term benefits. The

environment with complex conditions, most

environment canning obstacle

avoidance methods require large

actor-cri obstacles. Third, for training in an environment with complex conditions, most
deep reinforcement learning obstacle
avoidance methods require large
computational resources and time, and learned
policies cannot be quickly a **EXEMPLE THE SET APPLICATE ASSAGE THE CONSUMATE CONSUMATE CONSUMATE CONDUST**
 3. Overview and Application of Deep
 3. Overview and Algorithms of Deep
 3. Approximate FR
 3. Approximate Set Approximate Set Approxima avoidance methods require large

computational resources and time, and learned

policies cannot be quickly adapted to changes

in the environment for real-time applications

[14]. The other serious challenge is related to
 poincies cannot be quickly adapted to changes

in the environment for real-time applications

[14]. The other serious challenge is related to

the lack of current environmental perception

along with navigation stability, in the environment for real-time applications

[14]. The other serious challenge is related to

the lack of current environmental perception

along with navigation stability, especially

when the drones have to fly for an [14]. The other serious challenge is related to
the lack of current environmental perception
the ack of current environmental perception
when the drones have to fly for an extended
duration in the three-dimensional comple the lack of current environmental perception

along with navigation stability, especially

when the drones have to fly for an extended

duration, the

duration in the three-dimensional complex

environment; a system canno

along with navigation stability, especially

when the drones have to fly for an extended

environment; a system cannot be robust

environment; a system cannot be robust

environment; a system cannot be robust

performing When the drones have to fly for an extended

duration in the three-dimensional complex

environment; a system cannot be robust

enough [15].
 3. Overview and Application of Deep
 3. Overview and Application of Deep
 duration in the three-dimensional complex

environment; a system cannot be robust

environment as parameters θ to maximize

compute and Application of Deep

Reinforcement Learning

3.1 Basic Concepts and Algorithms of environment; a system cannot be robust

enough [15].
 3. Overview and Application of Deep
 Reinforcement Learning
 3.1 Basic Concepts and Algorithms of Deep

This formula indicates
 Reinforcement Learning

Deep re enough [15].
 S. Overview and Application of Deep

reward. The update readers of the properties of the product is:
 Reinforcement Learning
 Reinforcement Learning
 Reinforcement Learning

Deep reinforcement learni 3. Overview and Application of Deep

reward. The update form

readient is:

Reinforcement Learning

2.1 Basic Concepts and Algorithms of Deep

Reinforcement Learning

Deep reinforcement learning

Deep reinforcement learni **3. Overview and Application of Deep** gradient is:
 Reinforcement Learning $\nabla_{\theta}J(\theta) = \Phi_{\pi_{\theta}}[\nabla_{\theta} \log \pi_{\theta}(a)]$
 a Basic Concepts and Algorithms of Deep This formula indicates
 Reinforcement Learning (DRL) is **Reinforcement Learning**
 and Algorithms of Deep
 Reinforcement Learning

Deep reinforcement Learning

Deep reinforcement learning

Deep reinforcement learning

deep learning

technology that combines reinforcement

l 3.1 Basic Concepts and Algorithms of Deep

Reinforcement Learning

Deep

This formula indicates the

updated based on the param

technology that combines reinforcement

learning and deep learning, aiming to solve

tasks w **S.1 Basic Concepts and Algorithms of Deep**
 Reinforcement Learning

Deep reinforcement learning (DRL) is a

bechnology that combines reinforcement

learning and deep learning, aiming to solve

tasks with high-dimension **Reinforcement Learning**

Deep reinforcement learning (DRL) is a

technology that combines reinforcement

learning and deep learning, aiming to solve

tasks with high-dimensional input space and

tasks with high-dimensiona Deep remforcement learning (DRL) is
technology that combines reinforcement
learning and deep learning, aiming to solv
tasks with high-dimensional input space an
complex decision-making processes. The cor
idea of reinforcem technology that combines reinforcement

learning and deep learning, aiming to solve

tacks with high-dimensional input space and

tacks with digital processes. The core

idea of reinforcement learning is to learn

the best learning and deep learning, aiming to solve

tasks with high-dimensional input space and

complex decision-making processes. The core

dea of reinforcement learning is to learn

the best strategy to maximize the cumulativ tasks with high-dimensional input space and

complex decision-making processes. The core

idea of

the best strategy to maximize the cumulative

the best strategy to maximize the cumulative

are **Obstacle Avoidance**

the complex decision-making processes. The core

idea of reinforcement learning is to learn

the best strategy to maximize the cumulative

reward through the interaction between the used in autonomous

agent and the environme idea of reinforcement learning is to learn

the best strategy to maximize the cumulative Deep reinfor

reward through the interaction between the

and error process. DRL uses deep neural

and aror process. DRL uses deep n learning and deep learning, aiming to solve
tasks with high-dimensional input space and
complex decision-making processes. The ore
diea of reinforcement learning is to learn
the best strategy to maximize the cumulative
th

agent and the environment in a continuous trial
and error process. DRL uses deep neural
networks to represent the policy function or
avoid static or dynamic
value function, enabling it to process complex
places high deman

transition probability $P(s_{i+1} | s_i, a_i)$, and obtains
an immediate reward $r_i = R(s_i, a_i)$. The goal of
the agent is to find the optimal strategy π^* to
maximize the cumulative discounted reward G_i . **An Academic Education**

transition probability $P(s_{i+1} | s_i, a_i)$, and obtains

an immediate reward $r_i = R(s_i, a_i)$. The goal of

the agent is to find the optimal strategy π^* to

maximize the cumulative discounted reward
 The Education

Ing House

, and obtains

. The goal of

rategy π^* to

unted reward **the agent is to find the controller in the controller of the agent is to find the optimal strategy** π^* **to maximize the cumulative discounted reward** G_t **:
** $G = \sum_{k=1}^{\infty} \gamma^k r$ **(1)** the agent is to find the optimal strategy π^* to to **Constraint (The Control Archatter Controller Controller School Controller (The cumulative discounted reward** $r_i = R(s_i, a_i)$ **)** The goal of the agent is to find the optimal strategy π^* to maximize the cumulative discounte G_t . **depending House**
 c f *t e t***_{shm} ***t t c <i>t c t t c t c t c t c t c t c t c t c t c t c t c t* **Containing House**
 G *F* **Containing House**
 Containing Pointing House
 Contained $r_i = R(s_i, a_i)$, and obtains

to find the optimal strategy π^* to

to example the control of example π^* to
 $G_t = \sum_{k=0}^{\infty}$ **Constraint Container Controlling Controlling Controlling Constant**
transition probability $P(s_{t+1} | s_t, a_t)$, and obtains
an immediate reward $r_t = R(s_t, a_t)$. The goal of
the agent is to find the optimal strategy π^* to
ma **1 C**
 1 Academic Education
 tion probability $P(s_{t+1} | s_t, a_t)$, and obtains

mediate reward $r_t = R(s_t, a_t)$. The goal of

gent is to find the optimal strategy π^* to

mize the cumulative discounted reward
 $G_t = \sum_{k=0}^{\infty} \gamma^k$ **Anomia Education**
 Anomia Education
 Contains
 Contains

$$
G_{t} = \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1}
$$
 (1)

$$
Q(s_t, a_t) = r_t + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1})
$$
\n(2)

Publishing House

transition probability $P(s_{t+1} | s_t, a_t)$, and obtains

an immediate reward $r_i = R(s_t, a_t)$. The goal of

the agent is to find the optimal strategy π^* to

maximize the cumulative discounted reward
 G_t transition probability $P(s_{t+1} | s_t, a_t)$, and obtains
an immediate reward $r_i = R(s_t, a_t)$. The goal of
the agent is to find the optimal strategy π^* to
maximize the cumulative discounted reward
 G_t :
 $G_t = \sum_{k=0}^{\infty} \gamma^k r_{$ transition probability ${}^{F(S_{i+1} S_i, a_i)}$, and obtains
an immediate reward $r_i = R(s_i, a_i)$. The goal of
the agent is to find the optimal strategy π^* to
maximize the cumulative discounted reward
 G_i :
 $G_i = \sum_{k=0}^{\infty} \gamma^k r$ an immediate reward $r_i = R(s_i, a_i)$. The goal of
the agent is to find the optimal strategy π^* to
maximize the cumulative discounted reward
 G_t :
 $G_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$ (1)
 $Q(s_i, a_i) = r_i + \gamma \max_{a_{i=1}} Q(s_{t+1}, a_{t+1})$ (2)
 the agent is to find the optimal strategy π^* to
maximize the cumulative discounted reward
 G_t :
 $G_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$ (1)
 $Q(s_t, a_t) = r_t + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1})$ (2)
Among them, $\gamma \in [0,1]$ is a discount factor
u transition probability $P(s_{i+1} | s_i, a_i)$, and obtains
an immediate reward $r_i = R(s_i, a_i)$. The goal of
the agent is to find the optimal strategy π^* to
maximize the cumulative discounted reward
 G_i :
 $G_i = \sum_{k=0}^{\infty} \gamma^k r_{$ G_t :
 $G_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$ (1)
 $Q(s_t, a_t) = r_t + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1})$ (2)

Among them, $\gamma \in [0,1]$ is a discount factor

used to balance short-term rewards and

long-term benefits. The key algorithms of deep

rei an immediate reward $r_i = R(s_i, a_i)$. The goal of
the agent is to find the optimal strategy π^* to
maximize the cumulative discounted reward
 G_i :
 $G_i = \sum_{k=0}^{\infty} \gamma^k r_{i+k+1}$ (1)
 $Q(s_i, a_i) = r_i + \gamma \max_{a_{i+1}} Q(s_{i+1}, a_{i+1})$ (2)
 $G_t = \sum_{k=0} Y^k r_{t+k+1}$ (1)
 $Q(s_t, a_t) = r_t + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1})$ (2)

Among them, $Y \in [0,1]$ is a discount factor

used to balance short-term rewards and

long-term benefits. The key algorithms of deep

reinforcement lea $Q(s_i, a_i) = r_i + \gamma \max_{a_{i+1}} Q(s_{i+1}, a_{i+1})$ (2)
Among them, $\gamma \in [0,1]$ is a discount factor
used to balance short-term rewards and
long-term benefits. The key algorithms of deep
reinforcement learning include deep Q
network (D $Q(s_i, a_i) = r_i + \gamma \max_{a_{i+1}} Q(s_{i+1}, a_{i+1})$ (2)
Among them, $\gamma \in [0,1]$ is a discount factor
used to balance short-term rewards and
long-term benefits. The key algorithms of deep
reinforcement learning include deep Q
network (D $G_i = \sum_{k=0}^{\infty} \gamma^k r_{i+k+1}$ (1)
 $Q(s_i, a_i) = r_i + \gamma \max_{a_{i+1}} Q(s_{i+1}, a_{i+1})$ (2)

Among them, $\gamma \in [0,1]$ is a discount factor

aused to balance short-term rewards and

long-term benefits. The key algorithms of deep

reinforce used to balance short-term rewards and
long-term benefits. The key algorithms of deep
reinforcement learning include deep Q
network (DQN), policy gradient method and
actor-critic method. In DQN, the Q value
function $Q(s,a)$ long-term benefits. The key algorithms of deep
reinforcement learning include deep Q
network (DQN), policy gradient method and
actor-critic method. In DQN, the Q value
function $Q(s,a)$ represents the expected
cumulative re reinforcement learning include deep Q
network (DQN), policy gradient method and
actor-critic method. In DQN, the Q value
function $Q(s,a)$ represents the expected
cumulative reward after selecting action ^a in
state ^S. A network (DQN), policy gradient method and
actor-critic method. In DQN, the Q value
function $Q(s,a)$ represents the expected
cumulative reward after selecting action a in
state S . Approximate $Q(s,a)$ through a deep
neura to balance short-term rewards and
 Jerm benefits. The key algorithms of deep

ccement learning include deep Q
 Z(DQN), policy gradient method and
 Jritic method. In DQN, the Q value

on $Q(s,a)$ represents the expecte ong them, $\gamma \in [0,1]$ is a discount factor

1 to balance short-term rewards and

t-term benefits. The key algorithms of deep

forcement learning include deep Q

orork (DQN), policy gradient method and

r-critic method. In

function $e^{(s,w)}$ represents the expected
cumulative reward after selecting action a in
state S . Approximate $Q(s,a)$ through a deep
neural network, and continuously update the Q
value through the Bellman equation
In ad cumulative reward arter selecting action " in
state S. Approximate $Q(s,a)$ through a deep
neural network, and continuously update the Q
value through the Bellman equation
In addition, the policy gradient method
directly op state ⁵. Approximate $\mathcal{Q}^{(s,a)}$ through a deep
neural network, and continuously update the Q
value through the Bellman equation
In addition, the policy gradient method
directly optimizes the policy $\pi(a|s)$ by
perfor actor-critic method. In DQIN, the Q value
function $Q(s,a)$ represents the expected
cumulative reward after selecting action ^a in
state *S*. Approximate $Q(s,a)$ through a deep
neural network, and continuously update the Q
 In addition, the policy gradient inethod
directly optimizes the policy $\pi(a|s)$ by
performing gradient ascent on the policy
parameters θ to maximize the cumulative
reward. The update formula of the policy
gradient is:
 directly optimizes the policy $A(u, s)$ by
performing gradient ascent on the policy
parameters θ to maximize the cumulative
reward. The update formula of the policy
gradient is:
 $\nabla_{\theta}J(\theta) = \tilde{\sigma}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a$

$$
\nabla_{\theta} J(\theta) = \bar{\mathbf{a}}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a \,|\, s) Q^{\pi}(s, a) \right] \tag{3}
$$

performing gradient ascent on the policy
parameters θ to maximize the cumulative
reward. The update formula of the policy
gradient is:
 $\nabla_{\theta}J(\theta) = \bar{\sigma}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s)Q^{\pi}(s,a)]$ (3)
This formula indicates th

The set of the same that the same that the set of drones are allowed in autonomous trial
time in a avoidance of drones. Drep neural autonomously in complex
images or somplex places high demands
images or robustness and co ep learning, aiming to solve

-d-mensional input space and

-n-making processes. The core
 Reinforcement Learning in Nav

forcement learning is to learn
 σ **to** maximize the cumulative
 σ **to** maximize the cumulat attive

1 the

in avoidance of drones. Dron

eural

autonomously in complex

autonomously in complex

autonomously in complex

places high demands

robustness and computing

algorithm. Traditional

is are

algorithms often parameters θ to maximize the cumulative
reward. The update formula of the policy
gradient is:
 $\nabla_{\theta}J(\theta) = \bar{\mathfrak{a}}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s)Q^{\pi}(s,a)]$ (3)
This formula indicates that the policy is
updated based on th reward. The update formula of the policy
gradient is:
 $\nabla_{\theta}J(\theta) = \bar{\mathfrak{a}}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a | s)Q^{\pi}(s, a)]$ (3)
This formula indicates that the policy is
updated based on the parameter gradient of the
policy π by gradient is:
 $\nabla_{\theta}J(\theta) = \bar{\sigma}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) Q^{\pi}(s,a) \right]$ (3)

This formula indicates that the policy is

updated based on the parameter gradient of the

policy π by sampling experience to

maximize the $\nabla_{\theta}J(\theta) = \vec{\sigma}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) Q^{\pi}(s,a) \right]$ (3)

This formula indicates that the policy is

updated based on the parameter gradient of the

policy π by sampling experience to

maximize the performance o This formula indicates that the policy is
updated based on the parameter gradient of the
policy π by sampling experience to
maximize the performance of the policy $J(\theta)$.
3.2 Analysis of the Application of Deep
Reinfor This formula indicates that the policy is
updated based on the parameter gradient of the
policy π by sampling experience to
maximize the performance of the policy $J(\theta)$.
3.2 Analysis of the Application of Deep
Reinfor dependent of the parameter gradient of the
policy π by sampling experience to
maximize the performance of the policy $J(\theta)$.
3.2 Analysis of the Application of Deep
Reinforcement Learning in Navigation and
Obstacle Avo policy and by sampling experience to
maximize the performance of the policy $J(\theta)$.
3.2 Analysis of the Application of Deep
Reinforcement Learning in Navigation and
Obstacle Avoidance
Deep reinforcement learning is increa maximize the performance of the policy $\sigma(\nu)$.

3.2 Analysis of the Application of Deep

Reinforcement Learning in Navigation and

Obstacle Avoidance

Deep reinforcement learning is increasingly

used in autonomous navig 3.2 Analysis of the Application of Deep
Reinforcement Learning in Navigation and
Obstacle Avoidance
Deep reinforcement learning is increasingly
used in autonomous navigation and obstacle
avoidance of drones. Drones need to 3.2 Analysis of the Application of Deep

Reinforcement Learning in Navigation and

Obstacle Avoidance

Deep reinforcement learning is increasingly

used in autonomous navigation and obstacle

avoidance of drones. Drones n **Reinforcement Learning in Navigation and**
 Obstacle Avoidance

Deep reinforcement learning is increasingly

used in autonomous navigation and obstacle

avoidance of drones. Drones need to navigate

autonomously in compl **Obstacle Avoidance**

Deep reinforcement learning is increasingly

used in autonomous navigation and obstacle

avoidance of drones. Drones need to navigate

autonomously in complex environments and

avoid static or dynamic Deep reinforcement learning is increasingly
used in autonomous navigation and obstacle
avoidance of drones. Drones need to navigate
autonomously in complex environments and
avoid static or dynamic obstacles, which
places h used in autonomous navigation and obstacl
avoidance of drones. Drones need to navigat
autonomously in complex environments an
avoid static or dynamic obstacles, whic
places high demands on the real-tim
robustness and compu avoidance of drones. Drones need to navigate
autonomously in complex environments and
avoid static or dynamic obstacles, which
places high demands on the real-time,
robustness and computing performance of the
algorithm. Tr

Andemic Education
 Andemic Education
 Andemic Education
 Andemic Education
 Andemic Publishing House
 Andemic Publishing House
 Andemic Publishing House
 Andemic Publishing House
 Andemic Publishing a
 A COM
 Example Education
 Exam COMORET CONTROVIDE CONTROVIDED ACCORDING THE PUBLISHING PUBLISHING PUBLISHING PUBLISHING AND AN END AND AN ENTIRE SURVEY THE AND AN END AND THE SURVEY CONDUCT AN EXAMPLE THE AND ANY LOT AND ANY LOT AND AN EXAMPLE ONLY LAT Academic Education
 Academic Education
 Academic Education
 Academic Education
 **Academic environment to avoid collisions and

Academic environment to avoid collisions and**
 Collisions and
 Collisions and
 Co CRE Academic Education
 CRE Academic Education
 CRE Publishing House
 CRE PUBLishing House
 CRE ACADEMIC STATIST AND THE STATIST THE STATIST THE STATIST OF THE STATIST OF SUMPLIFY AND MONITOR MONETON THE AGANT MIN Example Education
 Accelemic movid constrained and transitional constrained and t COMBUT CONTROVIDED ACCOMOVED CONTROLL
 CONTROVIDE PUDLISHING HOUSE AND ADDED

and autonomously adjust its flight path in a [12]. The

dynamic environment to avoid collisions and trains an

minimize flight time. In an e Figure 1 shows the application

Figure 1 shows the autonomously adjust its flight path in a [12]. The simulation env

dynamic environment to avoid collisions and

minimize flight time. In an environment with

dynamic obsta **From Conferential Conferential Conferential Conferential Conferential Conferential Conferential autonomously adjust its flight path in a [12]. The simulat dynamic environment to avoid collisions and trains an agent (u min Example 18**
 Example 28

International Conference on Social Development and Intelligent Technology (SDIT2024)

Example 12
 Example 12 Trains and Intelligent Technology (SDIT2024)

[12]. The simulation environment on the left

trains an agent (using a deep neural network)

to perform navigation tasks in a simulated

environment. The agent adjusts its st **Transional Conference on Social Development**
 and Intelligent Technology (SDIT2024)

[12]. The simulation environment on the left

trains an agent (using a deep neural network)

to perform navigation tasks in a simulate **rnational Conference on Social Development**
 and Intelligent Technology (SDIT2024)

[12]. The simulation environment on the left

trains an agent (using a deep neural network)

to perform navigation tasks in a simulated **rnational Conference on Social Development**
 and Intelligent Technology (SDIT2024)

[12]. The simulation environment on the left

trains an agent (using a deep neural network)

to perform navigation tasks in a simulated rnational Conference on Social Development
and Intelligent Technology (SDIT2024)
[12]. The simulation environment on the left
trains an agent (using a deep neural network)
to perform navigation tasks in a simulated
environ rnational Conference on Social Development
and Intelligent Technology (SDIT2024)
[12]. The simulation environment on the left
trains an agent (using a deep neural network)
to perform navigation tasks in a simulated
environ rnational Conference on Social Development

and Intelligent Technology (SDIT2024)

[12]. The simulation environment on the left

trains an agent (using a deep neural network)

to perform navigation tasks in a simulated

en rnational Conference on Social Development

and Intelligent Technology (SDIT2024)

[12]. The simulation environment on the left

trains an agent (using a deep neural network)

to perform navigation tasks in a simulated

en

Navigation

Planning

Figure 1. Application Process of Deep Reinforcement Learning in Autom

Obstacle Avoidance of Drones

Dynamic obstacle average of Deep

A. Key Issues and Challenges of Deep

Reinforcement Learning for Drone by task in auton Figure 1. Application Process of Deep Reinforcement Learning in

Mostacle Avoidance of Drones

A. Key Issues and Challenges of Deep

Reinforcement Learning for Drone asked in automore

Navigation

Navigation

A.1 Environme Figure 1. Application Process of Deep Reinforcement Learning in Autonom

Dynamic obstacle Avoidance of Drones

A: Key Issues and Challenges of Deep

Reinforcement Learning for Drone

Reinforcement Learning for Drone

Navig **Example 18 Controller Controller School Service Service Service and Challenges of Deep** task in autonomous 1
 Reinforcement Learning for Drone specially when there a
 Navigation
 A.1 Environmental Perception and Path 4. Key Issues and Challenges of Deep

Reinforcement Learning for Drone expecially when there are

Navigation

Navigation

1.1 Environmental Perception and Path

1.1 Environmental Perception and Path

1.1 Environmental Perc 4. Key Issues and Challenges of Deep

Reinforcement Learning for Drone especially when there

Navigation

4.1 Environmental Perception and Path

environmental environment and meta

Flanning

In the process of autonomous na **Reinforcement**
 Example 1999 Example 1999 Example 1999 Example 1999 Example 1999 Example 1999 Phanning
 Example 1999 Example 1999 Example 1999 Example 1999 Example 1999 Example 1999 Example 1999 Navigation

4.1 Environmental Perception and Path

Planning

inforcement learning in

Flanning

In the process of autonomous navigation of

the algorithms departing

dromes, environmental perception and path

planning are 4.1 Environmental Perception and Path

Planning

In the process of autonomous navigation of

the position and speed

drones, environmental perception and path

planning are the key to achieving accurate

planning are the k 4.1 Environmental Perception and Path

Planning

In the process of autonomous navigation of

In the position and speed

drones, environmental perception and path

planning are the key to achieving accurate

navigation and **Planning**
 Environg the process of autonomous navigation of

drones, environmental perception and path

planning are the key to achieving accurate

planning are the key to achieving accurate

algorithms often cannot

na In the process of autonomous navigation of

drones, environmental perception and path

palaming are the key to achieving accurate

navigation and safe flight. Environmental resulting in navigation

perception relies on the drones, environmental perception and path

palanning are the key to achieving accurate

navigation and safe flight. Environmental

perception relies on the drone's sensors, such

perception relies on the drone's sensors, w planning are the key to achieving accurate algorithms often cannot the avoigation relation endics on the drone's sensors, such incinicorement learning as lidar, canneras, or ultrasonic sensors, which dynamic changes by car mavigation and sate thight. Environmental
perception relies on the drone's sensors, such
as ident, cameras, or ultrasonic sensors, which
are used to detect surrounding obstacles and
are used to detect surrounding obstacles perception relies on the drone's sensors, such
as lidar, cameras, or ultrasonic sensors, which dynamic chang
are used to detect surrounding obstacles and strategies, but s
path features. However, sensor data is usually str as lidar, cameras, or ultrasonic sensors, which

are used to detect surrounding obstacles and

particular strategies, but slow

uncertain or noisy, and how to deal with these

deviations during trip

imprecise data is a ch and the surrounding obstacles and strategies, but slow conver

path features. However, sensor data is usually

increation or noisy, and how to deal with these

imprecise data is a challenge. At the same time, the rapid con path teatures. However, sensor data is usually strategies matues interest in or noisy, and how to deal with these deviations due imprecise data is a challenge. At the same time, the rapid codep reinforcement learning needs mprecise data is a challenge. At the same time,

deep reinforcement learning needs to use these

perception information for path planning to

ensure that the drone can find the optimal path

in a complex environment. In a
 deep reinforcement learning needs to use these
perception information for path planning to
ensure that the drone can find the optimal path
in a complex environment. In a
high-dimensional continuous state space, path
planni

Figure 1. Application Process of Deep Reinforcement Learning in Autonomous

Agent/deep neural network

Desired policy

Assemble Avoidance of Drones

Dynamic obstacle avoidance

A. Key Issues and Challenges of Deep

Reinfor Figure 1. Application Process of Deep Reinforcement Learning in Autonomous

Obstacle Avoidance of Drones

Dynamic obstacle avoids

A. Key Issues and Challenges of Deep

Reinforcement Learning for Drone

Navigation

Navigat expection
action
policy
Example 1998
Example 1999
Example 1999
Example 1999
Example 1999
Example 1999
**Dynamic obstacle avoidance is an important
task in autonomous navigation of drones,
the environment. A majo** action

action

policy

policy
 the Learning in Autonomous Navigation and
 observation
 observation
 observation
 observation
 observation
 observation
 observation
 observation
 observation
 observati action
policy
policy
policy
**and the contract of the control of the control of the control of the control of the contract
case is an important
task in autonomous navigation of drones,
especially when there are moving obsta** ensure that the algorithm converges to a stable
that Learning in Autonomous Navigation and
or of Drones
Dynamic obstacle avoidance is an important
task in autonomous navigation of drones,
especially when there are moving o Figure 1998

Strategy in Autonomous Navigation and

the Learning in Autonomous Navigation and

the of Drones

Dynamic obstacle avoidance is an important

task in autonomous navigation of drones,

especially when there are The policy

The policy

Interval and the policy

Dynamic obstacle avoidance is an important

task in autonomous navigation of drones,

especially when there are moving obstacles in

the environment. A major challenge of de policy

policy

policy

content **Learning in Autonomous Navigation and**
 cof Drones

Dynamic obstacle avoidance is an important

task in autonomous navigation of drones,

especially when there are moving obstacles in

th **Example 19016)**
 Example 10 Connect Connect Connect Connect Connect Connect Connect Connect task in autonomous navigation of drones, especially when there are moving obstacles in the environment. A major challenge of d From the and the seat of the seat of the strategies and the strategies and the strategies are different task in autonomous navigation of drones, especially when there are moving obstacles in the environment. A major challe **reflexaming in Autonomous Navigation and**
 e of Drones

Dynamic obstacle avoidance is an important

task in autonomous navigation of drones,

especially when there are moving obstacles in

the environment. A major chall **Dynamic obstacle avoidance is an important**

task in autonomous navigation of drones,

especially when there are moving obstacles in

the environment. A major challenge of deep

reinforcement learning in this case is how Dynamic obstacle avoidance is an important
task in autonomous navigation of drones,
especially when there are moving obstacles in
the environment. A major challenge of deep
reinforcement learning in this case is how to
ens task in autonomous navigation of drones,
especially when there are moving obstacles in
the environment. A major challenge of deep
reinforcement learning in this case is how to
ensure that the algorithm converges to a stabl especially when there are moving obstacles in
the environment. A major challenge of deep
reinforcement learning in this case is how to
ensure that the algorithm converges to a stable
strategy in a dynamic environment. Beca the environment. A major challenge of deep
reinforcement learning in this case is how to
ensure that the algorithm converges to a stable
strategy in a dynamic environment. Because
the position and speed of obstacles are
co remforcement learning in this case is how to
ensure that the algorithm converges to a stable
strategy in a dynamic environment. Because
the position and speed of obstacles are
constantly changing, traditional path planning ensure that the algorithm converges to a stable
strategy in a dynamic environment. Because
the position and speed of obstacles are
constantly changing, traditional path planning
algorithms often cannot be updated in time,
 strategy in a dynamic environment. Because
the position and speed of obstacles are
constantly changing, traditional path planning
algorithms often cannot be updated in time,
resulting in navigation failure. Deep
reinforcem the position and speed of obstacles are
constantly changing, traditional path planning
algorithms often cannot be updated in time,
resulting in navigation failure. Deep
reinforcement learning copes with these
dynamic chang algorithms often cannot be updated in time,
resulting in navigation failure. Deep
reinforcement learning copes with these
dynamic changes by constantly adjusting
strategies, but slow convergence or unstable
strategies may resulting in navigation railine. Deep
reinforcement learning copes with these
dynamic changes by constantly adjusting
strategies, but slow convergence or unstable
strategies may lead to collisions or path
deviations during reinforcement learning copes with these
dynamic changes by constantly adjusting
strategies, but slow convergence or unstable
strategies may lead to collisions or path
deviations during training. Therefore, ensuring
the rap dynamic changes by constantly adjusting
strategies, but slow convergence or unstable
strategies may lead to collisions or path
deviations during training. Therefore, ensuring
the rapid convergence and stability of the
algo strategies, but slow convergence or unstable
strategies may lead to collisions or path
deviations during training. Therefore, ensuring
the rapid convergence and stability of the
algorithm in a dynamic environment is an
imp

strategies may lead to collisions or path
deviations during training. Therefore, ensuring
the rapid convergence and stability of the
algorithm in a dynamic environment is an
important issue for UAV navigation, which
requir deviations during training. Therefore, ensuring
the rapid convergence and stability of the
algorithm in a dynamic environment is an
important issue for UAV navigation, which
requires more efficient exploration strategies
a the rapid convergence and stability of the
algorithm in a dynamic environment is an
important issue for UAV navigation, which
requires more efficient exploration strategies
and more accurate value function estimation.
4.3 algorithm in a dynamic environment is an important issue for UAV navigation, which requires more efficient exploration strategies and more accurate value function estimation.

4.3 Algorithm Performance Optimization and Rea

International Conference on Social Development and Intelligent Technology (SDIT2024)

International Conference on Social Development

and Intelligent Technology (SDIT2024)

and action spaces, which may cause decision

delays and affect flight safety. To this end,

optimizing the performance of the algorithm International Conference on Social Development

and Intelligent Technology (SDIT2024)

and action spaces, which may cause decision

delays and affect flight safety. To this end,

optimizing the performance of the algorithm International Conference on Social Development

and Intelligent Technology (SDIT2024)

and action spaces, which may cause decision

delays and affect flight safety. To this end,

optimizing the performance of the algorithm International Conference on Social Development

and Intelligent Technology (SDIT2024)

and action spaces, which may cause decision

delays and affect flight safety. To this end,

optimizing the performance of the algorithm International Conference on Social Development

and Intelligent Technology (SDIT2024)

and action spaces, which may cause decision

delays and affect flight safety. To this end,

solved to ensure its

optimizing the perfor International Conference on Social Development

and Intelligent Technology (SDIT2024)

and action spaces, which may cause decision

delays and affect flight safety. To this end,

solved to ensure its

optimizing the perfor International Conference on Social Development

and Intelligent Technology (SDIT2024)

and action spaces, which may cause decision

optimizing the performance of the algorithm to

in actual comple

improve its application International Conference on Social Development

and Intelligent Technology (SDIT2024)

and action spaces, which may cause decision

delays and affect flight safety. To this end,

spille and solved to ensure its relia

opti International Conference on Social Development

and Intelligent Technology (SDIT2024)

and action spaces, which may cause decision

delays and affect flight safety. To this end,

solved to ensure its r

optimizing the perf International Conference on Social Development

and Intelligent Technology (SDIT2024)

and action spaces, which may cause decision

delays and affect flight safety. To this end,

solved to ensure its ro

improve its applic International Conference on Social Development

and Intelligent Technology (SDIT2024)

and action spaces, which may cause decision

delays and affect flight safety. To this end,

solved to ensure its

optimizing the perfor **and Intelligent Technology (SDIT2024)**

and action spaces, which may cause decision

delays and affect flight safety. To this end,

optimizing the performance of the algorithm to

in actual complex scenarios

improve its real-time performance of UAV navigation

and action spaces which may cause decision

delays and affect flight safety. To this end,

optimizing the performance of the algorithm to

in actual complex so

in actual complex so algorithms. optimizing the performance of the algoritic
improve its application in real-time tasks
key challenge. The optimization direc
include accelerating the network's rease
process, reducing unnecessary computat
burdens, and incr mprove its application in real-time tasks is a

include accelerating the network's reasoning

includes accelerating the network increasing decision

proces, reducing unnecessary computational

burdens, and increasing decis key challenge. The optimization directions

include accelerating the network's reasoning

process, reducing unnecessary computational

burdens, and increasing decision speed

through parallel computing. In addition,

throu include accelerating the network's reasoning

process, reducing unnecessary computational

burdens, and increasing decision speed

through parallel computing. In addition, Environments

designing lightweight deep neural ne

process, reducing unnecessary computational

burdens, and increasing decision speed

therough parallel computing. In addition,

designing lightweight deep neural network

models and reducing training and reasoning

(2023). burdens, and increasing decision speed

through parallel computing. In addition,

through parallel computing. In addition, Environments. IEEE

models and reducing training and reasoning (2023).

time are also effective mea through parallel computing. In addition,

metales and reducing training and reasoning

metals and reducing training and reasoning

time are also effective means to improve the

real-time performance of UAV navigation

and designing lightweight deep neural network

in andels and reducing training and reasoning

time are also effective means to improve the

real-time performance of UAV navigation

real-time performance of UAV navigation

5. models and reducing training and reasoning

real-time are also effective means to improve the

real-time performance of UAV navigation

algorithms.
 S. Conclusion
 S. Conclusion
 S. Conclusion
 S. Conclusion
 S. C time are also effective means to improve the

real-time performance of UAV navigation

algorithms.

algorithms.

algorithms.
 5. Conclusion

This paper systematically studies and

UAV Obstacle *A*

discusses the applicat real-time performance of UAV navigation

algorithms.

algorithms.
 5. Conclusion
 5. Conclusion
 $\frac{1}{2}$ Conclusio algorithms.
 Examplement Concellation
 Example School (S)
 Exam 5. Conclusion

This paper systematically studies and

discusses the application of deep

reinforcement learning in autonomous

reinforcement learning in autonomous

reinforcement learning in autonomous

reinforcement learn **S. Conclusion**

This paper systematically studies and italy abs/2103.06403 (a

discusses the application of deep Ationomous National Care

reinforcement learning in autonomous Marge-Scale Con

navigation and obstacle avoi This paper systematically studies and [3] Wang, C., Wand

iscusses the application of deep

navigation and obstacle avoidance of UAVs. Deep Reinforce

mavigation and obstacle avoidance are avoidance Technology 68,

technol discusses the application of deep

reinforcement learning in autonomous

navigation and obstacle avoidance of UAVs. Deep Reinforcem

navigation and obstacle avoidance Technology 68, p

technologies, it can be found that tr remhorcement learning in autonomous

Intrough the analysis of existing UAV

Internation and obstacle avoidance

navigation and obstacle avoidance

rechnologies, it can be found that traditional

technologies, it can be fou mavigation and obstacle avoidance of UAVs. Deep Reinforcement
Through the analysis of existing UAV IEEE Transaction-
navigation and obstacle avoidance
technologies, it can be found that traditional [4] Joshi, B., Kapur,
se Through the analysis of existing UAV

iEEE Transactions

revindogies, it can be found that traditional

sensor- and rule-based navigation methods

Sim-to-Real Deep Rei

have many limitations in dynamic and

based Obstacle navigation and obstacle avoidance Technology of
technologies, it can be found that traditional [4] Joshi, B., H
sensor- and rule-based navigation methods Sim-to-Real D
have many limitations in dynamic and based Obstacle
co technologies, it can be tound that traditional

sensor- and rule-based navigation methods

have may limitations in dynamic and

based Obstacle Avoidance

complex environments and are difficult to

cope with the challenges sensor- and rule-based navigation methods

sim-to-Keal Deep F

have many limitations in dynamic and

complex environments and are difficult to

compe with the challenges of real-time changes.

learning technology enables U have many limitations in dynamic and

complex environments and are difficult to

cope with the challenges of real-time changes.

The introduction of deep reinforcement [5] [5] Grando, R. B., Jesus,

learning technology ena complex environments and are difficult to
cope with the challenges of real-time changes.
The introduction of deep reinforcement
learning technology enables UAVs to perceive
the environment, plan paths, and effectively
avoi cope with the challenges of real-time changes. abs/2303.07.

The introduction of deep reinforcement [5] [5] Grando,

learning technology enables UAVs to perceive L. J.: Deep

the environment, plan paths, and effectively Ma The introduction of deep reinforcement [5] [5] Grando, R. B., Jes

learning technology enables UAVs to perceive

the environment, plan affectively

avoid obstacles through autonomous learning,

where a combined

symposium 102450

also und the paper also states through autonomous learning technology enables UAVs to perceive

the environment, plan paths, and effectively

showing great technical advantages. Combined

with the algorithmic chara the environment, plan paths, and effectively

avoid obstacles through autonomous learning,

showing great technical advantages. Combined

with the algorithmic characteristics of deep

symposium

reinforcement learning, UAV avoid obstacles through autonomous learning,

showing great technical advantages. Combined

with the algorithmic characteristics of deep

reinforcement learning, UAVs can show Workshop on

stronger adaptability and autonom

showing great technical advantages. Combined

with the algorithmic characteristics of deep

reinforcement learning, UAVs can show

stronger adaptability and autonomous (WRE), pp. 1-6 (

decision-making capabilities in dyna with the algorithmic characteristics of deep

reinforcement learning, UAVs can show

stronger adaptability and autonomous

decision-making capabilities in dynamic and

(G) Lin, H., Peng, X.: Ai

high-dimensional environmen remforcement learning, UAVs can show Workshop on Restronger adaptability and autonomous (WRE), pp. 1-6 (20)
decision-making capabilities in dynamic and [6] Lin, H, Peng, X.:
full-process intelligent navigation from Avoidan stronger adaptability and autonomous (WRE), pp. 1-6 (2020).

decision-making capabilities in dynamic and [6] Lin, H., Peng, X.: Auto

high-dimensional environments, and realize

full-process intelligent navigation from Avo decision-making capabilities in dynamic and

igh-dimensional environments, and realize

full-process intelligent navigation from Avoidance and

perception to excution.

Perception to excution.

However, although deep reinf high-dimensional environments, and realize

full-process intelligent navigation from Avoidance a

perception to execution.

However, although deep reinforcement [7] Lu, Y., Xue,

learning provides a new solution for UAV

a 1011-process intelligent navigation from Avoidance

perception to execution. Access 9, p

However, although deep reinforcement [7] Lu, Y., Xi

learning provides a new solution for UAV survey on

and

analyzes its challenge perception to execution. Access 9, pp

However, although deep reinforcement [7] Lu, Y., Xua

learning provides a new solution for UAV survey on v

autonomous navigation, this paper also

analyzes its challenges in environm However, atthough deep remtorcement [7] Lu, Y., Xue, Z., Xia,

learning provides a new solution for UAV survey on vision-based

andlyzes its challenges in environmental -32 (2018).

perception, dynamic obstacle avoidance earning provides a new solution for UAV
autonomous navigation, this paper also Go-spatial Information
autonomous navigation, this paper also Go-spatial Information
preception, dynamic obstacle avoidance, [8] Back, S., Cho,

Superior Control Publishing House
still many key technical issues that need to be
solved to ensure its reliability and practicality
in actual complex scenarios.
References **Solved to ensure its reliability and produced to ensure its reliability and practicality in actual complex scenarios.**
 References

[1] Xue, Y., Chen, W.: A UAV Navigation **in actual complements**
 in actual complex scenarios
 in actual complex scenarios.
 References

[1] Xue, Y., Chen, W.: A UAV Navigation

Approach Based on Deep Reinforcement

References

- **Example 12 Academic Education**
 Example 12 Academic Education

still many key technical issues that need to be

solved to ensure its reliability and practicality

in actual complex scenarios.
 References

[1] Xue, Y., **Applies Contains Control**
 Applies Publishing House

May be every the publishing House

term centure its reliability and practicality

ctual complex scenarios.
 Serences

Xue, Y., Chen, W.: A UAV Navigation

Approach **Consumer Control Control Control Control Control Control Control Control Consumer Section Section Consumer Consumer Section Consumer Consume Example 18 Concerned Control Control Concerned Control Control Control Concerned Consumer its reliability and practicality ctual complex scenarios.

Ferences

Xue, Y., Chen, W.: A UAV Navigation

Approach Based on Deep Re Consumer Control Control Consumer School Consumer School Consumer School Consumer Is reliability and practicality ctual complex scenarios.**
 Series Xue, Y., Chen, W.: A UAV Navigation

Approach Based on Deep Reinforceme (2023). Fublishing House
still many key technical issues that need to be
solved to ensure its reliability and practicality
in actual complex scenarios.
References
[1] Xue, Y., Chen, W.: A UAV Navigation
Approach Based on Deep Re many key technical issues that need to be
red to ensure its reliability and practicality
ctual complex scenarios.
Xue, Y., Chen, W.: A UAV Navigation
Approach Based on Deep Reinforcement
Learning in Large Cluttered 3D
Envi many key technical issues that need to be
red to ensure its reliability and practicality
ctual complex scenarios.
Yue, Y., Chen, W.: A UAV Navigation
Approach Based on Deep Reinforcement
Learning in Large Cluttered 3D
Envi read to ensure its reliability and practicality

ctual complex scenarios.

Yue, Y., Chen, W.: A UAV Navigation

Approach Based on Deep Reinforcement

Learning in Large Cluttered 3D

Environments. IEEE Transactions on

Vehi ctual complex scenarios.

Serences

Xue, Y., Chen, W.: A UAV Navigation

Approach Based on Deep Reinforcement

Learning in Large Cluttered 3D

Environments. IEEE Transactions on

Vehicular Technology 72, pp. 3001-3014

(20 References

[1] Xue, Y., Chen, W.: A UAV Navigation

Approach Based on Deep Reinforcement

Learning in Large Cluttered 3D

Environments. IEEE Transactions on

Vehicular Technology 72, pp. 3001-3014

(2023).

[2] Roghair, J **Example 18 Search Control Control Control Control Control Control Cearning** in Large Cluttered 3D
Environments. IEEE Transactions on Vehicular Technology 72, pp. 3001-3014
(2023).
Roghair, J., Ko, K., Asli, A. E. N., Jann
-
- Xue, Y., Chen, W.: A UAV Navigation
Approach Based on Deep Reinforcement
Learning in Large Cluttered 3D
Environments. IEEE Transactions on
Vehicular Technology 72, pp. 3001-3014
(2023).
Roghair, J., Ko, K., Asli, A. E. N., Approach Based on Deep Reinforcement
Learning in Large Cluttered 3D
Environments. IEEE Transactions on
Vehicular Technology 72, pp. 3001-3014
(2023).
Roghair, J., Ko, K., Asli, A. E. N.,
Jannesari, A.: A Vision Based Deep
 Learning in Large Cluttered 3D

Environments. IEEE Transactions on

Vehicular Technology 72, pp. 3001-3014

(2023).

Roghair, J., Ko, K., Asli, A. E. N.,

Jannesari, A.: A Vision Based Deep

Reinforcement Learning Algorith Environments. IEEE Transactions on
Vehicular Technology 72, pp. 3001-3014
(2023).
Roghair, J., Ko, K., Asli, A. E. N.,
Jannesari, A.: A Vision Based Deep
Reinforcement Learning Algorithm for
UAV Obstacle Avoidance. ArXiv
a Vehicular Technology 72, pp. 3001-3014

(2023).

[2] Roghair, J., Ko, K., Asli, A. E. N.,

Jannesari, A.: A Vision Based Deep

Reinforcement Learning Algorithm for

UAV Obstacle Avoidance. ArXiv

abs/2103.06403 (2021).

[3 (2023).

Roghair, J., Ko, K., Asli, A. E. N.,

Jannesari, A.: A Vision Based Deep

Reinforcement Learning Algorithm for

UAV Obstacle Avoidance. ArXiv

abs/2103.06403 (2021).

Wang, C., Wang, J., Shen, Y., Zhang, X.:

Auto Roghair, J., Ko, K., Asli, A. E. N.,
Jannesari, A.: A Vision Based Deep
Reinforcement Learning Algorithm for
UAV Obstacle Avoidance. ArXiv
abs/2103.06403 (2021).
Wang, C., Wang, J., Shen, Y., Zhang, X.:
Autonomous Navigati Jannesari, A.: A Vision Based Deep

Reinforcement Learning Algorithm for

UAV Obstacle Avoidance. ArXiv

abs/2103.06403 (2021).

Wang, C., Wang, J., Shen, Y., Zhang, X.:

Autonomous Navigation of UAVs in

Large-Scale Compl Reinforcement Learning Algorithm for
UAV Obstacle Avoidance. ArXiv
abs/2103.06403 (2021).
Wang, C., Wang, J., Shen, Y., Zhang, X.:
Autonomous Navigation of UAVs in
Large-Scale Complex Environments: A
Deep Reinforcement Lea UAV Obstacle Avoidance. ArXiv
abs/2103.06403 (2021).
[3] Wang, C., Wang, J., Shen, Y., Zhang, X.:
Autonomous Navigation of UAVs in
Large-Scale Complex Environments: A
Deep Reinforcement Learning Approach.
IEEE Transactions abs/2103.06403 (2021).

Wang, C., Wang, J., Shen, Y., Zhang, X.:

Autonomous Navigation of UAVs in

Large-Scale Complex Environments: A

Deep Reinforcement Learning Approach.

IEEE Transactions on Vehicular

Technology 68,
-
- Wang, C., Wang, J., Shen, Y., Zhang, X.:
Autonomous Navigation of UAVs in
Large-Scale Complex Environments: A
Deep Reinforcement Learning Approach.
IEEE Transactions on Vehicular
Technology 68, pp. 2124-2136 (2019).
Joshi, Autonomous Navigation of UAVs in

Large-Scale Complex Environments: A

Deep Reinforcement Learning Approach.

IEEE Transactions on Vehicular

Technology 68, pp. 2124-2136 (2019).

Joshi, B., Kapur, D., Kandath, H.:

Sim-to Large-Scale Complex Environments: A

Deep Reinforcement Learning Approach.

IEEE Transactions on Vehicular

Technology 68, pp. 2124-2136 (2019).

Joshi, B., Kapur, D., Kandath, H.:

Sim-to-Real Deep Reinforcement Learning
 Deep Reinforcement Learning Approach.

IEEE Transactions on Vehicular

Technology 68, pp. 2124-2136 (2019).

Joshi, B., Kapur, D., Kandath, H.:

Sim-to-Real Deep Reinforcement Learning

based Obstacle Avoidance for UAVs un IEEE Transactions on Vehicular
Technology 68, pp. 2124-2136 (2019).
Joshi, B., Kapur, D., Kandath, H.:
Sim-to-Real Deep Reinforcement Learning
based Obstacle Avoidance for UAVs under
Measurement Uncertainty. ArXiv
abs/2303 Technology 68, pp. 2124-2136 (2019).

Joshi, B., Kapur, D., Kandath, H.:

Sim-to-Real Deep Reinforcement Learning

based Obstacle Avoidance for UAVs under

Measurement Uncertainty. ArXiv

abs/2303.07243 (2023).

[5] Grando [4] Joshi, B., Kapur, D., Kandath, H.:

Sim-to-Real Deep Reinforcement Learning

based Obstacle Avoidance for UAVs under

Measurement Uncertainty. ArXiv

abs/2303.07243 (2023).

[5] [5] Grando, R. B., Jesus, J. C., Drews-Sim-to-Real Deep Reinforcement Learning

based Obstacle Avoidance for UAVs under

Measurement Uncertainty. ArXiv

abs/2303.07243 (2023).

[5] Grando, R. B., Jesus, J. C., Drews-Jr, P.

L. J.: Deep Reinforcement Learning fo based Obstacle Avoidance for UAVs under
Measurement Uncertainty. ArXiv
abs/2303.07243 (2023).
[5] Grando, R. B., Jesus, J. C., Drews-Jr, P.
L. J.: Deep Reinforcement Learning for
Mapless Navigation of Unmanned Aerial
Vehic Measurement Uncertainty. ArXiv
abs/2303.07243 (2023).
[5] Grando, R. B., Jesus, J. C., Drews-Jr, P.
L. J.: Deep Reinforcement Learning for
Mapless Navigation of Unmanned Aerial
Vehicles. 2020 Latin American Robotics
Sympos abs/2303.0/243 (2023).

[5] [5] Grando, R. B., Jesus, J. C., Drews-Jr, P.

L. J.: Deep Reinforcement Learning for

Mapless Navigation of Unmanned Aerial

Vehicles. 2020 Latin American Robotics

Symposium (LARS), 2020 Braz [5] Grando, R. B., Jesus, J. C., Drews-Jr, P.
L. J.: Deep Reinforcement Learning for
Mapless Navigation of Unmanned Aerial
Vehicles. 2020 Latin American Robotics
Symposium (LARS), 2020 Brazilian
Symposium on Robotics (SBR) L. J.: Deep Remtorcement Learning for
Mapless Navigation of Ummanned Aerial
Vehicles. 2020 Latin American Robotics
Symposium (LARS), 2020 Brazilian
Symposium on Robotics (SBR) and 2020
Workshop on Robotics in Education
(WR Mapless Navigation of Unmanned Aerial
Vehicles. 2020 Latin American Robotics
Symposium (LARS), 2020 Brazilian
Symposium on Robotics (SBR) and 2020
Workshop on Robotics in Education
(WRE), pp. 1-6 (2020).
Lin, H., Peng, X.:
-
-
- Vehicles. 2020 Latin American Robotics

Symposium (LARS), 2020 Brazilian

Symposium on Robotics (SBR) and 2020

Workshop on Robotics in Education

(WRE), pp. 1-6 (2020).

[6] Lin, H., Peng, X.: Autonomous Quadrotor

Naviga Symposium (LARS), 2020 Brazilian
Symposium on Robotics (SBR) and 2020
Workshop on Robotics in Education
(WRE), pp. 1-6 (2020).
Lin, H., Peng, X.: Autonomous Quadrotor
Navigation With Vision Based Obstacle
Avoidance and Pat Symposium on Robotics (SBR) and 2020
Workshop on Robotics in Education
(WRE), pp. 1-6 (2020).
Lin, H., Peng, X.: Autonomous Quadrotor
Navigation With Vision Based Obstacle
Avoidance and Path Planning. IEEE
Access 9, pp. 10 Workshop on Robotics in Education
(WRE), pp. 1-6 (2020).
Lin, H., Peng, X.: Autonomous Quadrotor
Navigation With Vision Based Obstacle
Avoidance and Path Planning. IEEE
Access 9, pp. 102450-102459 (2021).
Lu, Y., Xue, Z., (WRE), pp. 1-6 (2020).

Lin, H., Peng, X.: Autonomous Quadrotor

Navigation With Vision Based Obstacle

Avoidance and Path Planning. IEEE

Access 9, pp. 102450-102459 (2021).

Lu, Y., Xue, Z., Xia, G., Zhang, L.: A

survey (2020). Navigation With Vision Based Obstacle

Avoidance and Path Planning. IEEE

Access 9, pp. 102450-102459 (2021).

[7] Lu, Y., Xue, Z., Xia, G., Zhang, L.: A

survey on vision-based UAV navigation.

Geo-spatial Information Sc Avoidance and Path Planning. IEEE
Access 9, pp. 102450-102459 (2021).
Lu, Y., Xue, Z., Xia, G., Zhang, L.: A
survey on vision-based UAV navigation.
Geo-spatial Information Science 21, pp. 21
-32 (2018).
Back, S., Cho, G., Access 9, pp. 102450-102459 (2021).

Lu, Y., Xue, Z., Xia, G., Zhang, L.: A

survey on vision-based UAV navigation.

Geo-spatial Information Science 21, pp. 21

-32 (2018).

Back, S., Cho, G., Oh, J., Tran, X.-T., Oh,

H.: Lu, Y., Xue, Z., Xia, G., Zhang, L.: A
survey on vision-based UAV navigation.
Geo-spatial Information Science 21, pp. 21
-32 (2018).
Back, S., Cho, G., Oh, J., Tran, X.-T., Oh,
H.: Autonomous UAV Trail Navigation
with Obst survey on vision-based UAV navigation.

Geo-spatial Information Science 21, pp. 21

- 32 (2018).

[8] Back, S., Cho, G., Oh, J., Tran, X.-T., Oh,

H.: Autonomous UAV Trail Navigation

with Obstacle Avoidance Using Deep

Ne
-
-

Academic Conferences Series (ISSN: 3008-0908) 345

Collision-free UAV Navigation
 Collision-free UAV Navigation around

Moving Obstacles over an Uneven Terrain.

2023 IEEE International Conference on [12] Dobrevski, Mate

Robotics and Biomimetics (ROBIO), pp. (2021). D Academic Education

Publishing House

Collision-free UAV Navigation around

Moving Obstacles over an Uneven Terrain.

2023 IEEE International Conference on [12] Dobrevski, Matt

Robotics and Biomimetics (ROBIO), pp. (2021) **2023**
 2023 IEEE International Conference on S
 2023 IEEE International Conference on S

2023 IEEE International Conference on II2] Dobrevski, Matej &

2023 IEEE International Conference on II2] Dobrevski, Matej &

Ro **Academic Education**
 Publishing House
 Collision-free UAV Navigation around

Moving Obstacles over an Uneven Terrain.

2023 IEEE International Conference on [12] Dobrevski, Matej &

Robotics and Biomimetics (ROBIO), p **Academic Education**
 Publishing House

Collision-free UAV Navigation around

Moving Obstacles over an Uneven Terrain

2023 IEEE International Conference or

Robotics and Biomimetics (ROBIO), pp

1-6 (2023).

J Guo, T., **Academic Education**
 Collision-free UAV Navigation around

Moving Obstacles over an Uneven Terrain.

2023 IEEE International Conference on [12] Dobrevski, Matej

Robotics and Biomimetics (ROBIO), pp. (2021). Deep reinf
 Containing Huternational Conference on
 Collision-free UAV Navigation around

Moving Obstacles over an Uneven Terrain.

Robotics and Biomimetics (ROBIO), pp. (2021). Deep reinforcement learning Dournal of Aeronautics
 Collision-free UAV
 Collision-free UAV
 Collision-free UAV

Navigation around

Moving Obstacles over an Uneven Terrain.

1922 IEEE International Conference on [12] Dobrevski, Matej

1923 IEEE International Conference

International Conference on Social Development and Intelligent Technology (SDIT2024)

tional Conference on Social Development

and Intelligent Technology (SDIT2024)

reinforcement learning approach. Chinese

Journal of Aeronautics (2020).

] Dobrevski, Matej & Skočaj, Danijel.

(2021). Deep reinforcement le **Example 18 Conference on Social Development

and Intelligent Technology (SDIT2024)**

reinforcement learning approach. Chinese

Journal of Aeronautics (2020).

[Dobrevski, Matej & Skočaj, Danijel.

(2021). Deep reinforceme **Example 12:**
 EXECUTE:
 **CODE THE ANDER CONTEX (2021). Deep reinforcement learning for

map-less goal-driven robot navigation.

Interna** tional Conference on Social Development

and Intelligent Technology (SDIT2024)

reinforcement learning approach. Chinese

Journal of Aeronautics (2020).

] Dobrevski, Matej & Skočaj, Danijel.

(2021). Deep reinforcement le tional Conference on Social Development

and Intelligent Technology (SDIT2024)

reinforcement learning approach. Chinese

Journal of Aeronautics (2020).

] Dobrevski, Matej & Skočaj, Danijel.

(2021). Deep reinforcement le tional Conference on Social Development

and Intelligent Technology (SDIT2024)

reinforcement learning approach. Chinese

Journal of Aeronautics (2020).

] Dobrevski, Matej & Skočaj, Danijel.

(2021). Deep reinforcement le tional Conference on Social Development

and Intelligent Technology (SDIT2024)

reinforcement learning approach. Chinese

Journal of Aeronautics (2020).

] Dobrevski, Matej & Skočaj, Danijel.

(2021). Deep reinforcement le 10.1177/1729881421992621.