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Abstract:Exchange rates play a pivotal role
in global economic and financial activities,
influencing macroeconomic adjustments
through nominal and real rates. Accurate
exchange rate forecasting has become
increasingly vital for investors,
policymakers, and multinational
enterprises, enabling effective trading
strategies and proactive currency risk
management. Despite the theoretical
insights offered by fundamental models,
their practical application in short-term
forecasts remains limited. Statistical
models like GARCH, ARIMA, ECM, and
VAR have been widely utilized but struggle
to capture the nonlinear dynamics and
complex relationships in exchange rates,
especially over extended forecasting
horizons. Artificial intelligence (AI) models
have demonstrated significant promise,
although challenges like parameter
optimization and overfitting persist. Recent
empirical studies highlight the superior
robustness of hybrid models over single-
model approaches. Furthermore, volatility
forecasting has gained importance for risk
management, investment analysis, and
policymaking. This study leverages high-
frequency EUR/USD exchange rate data to
evaluate minute-based volatility and assess
the performance of various forecasting
models, contributing to the advancement of
predictive methodologies in currency
markets.
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1. Introduction
Exchange rates are crucial for economic
activities and financial markets, impacting
macroeconomic adjustments through both the
nominal and real exchange rates (Demir &

Razmi, 2022). Recently, the importance of
hedging against exchange rate risk has been
increasingly recognized. Accurate exchange
rate forecasts can significantly affect
international transactions and the global
currency market (Lal & Lim, 2023). For
investors, policymakers, and entrepreneurs in
multinational companies, precise exchange
rate predictions are crucial. They allow for the
developing of effective trading strategies and
proactive currency risk management (Wang,
2023). Therefore, accurately forecasting
exchange rates is critically important, and
there is a growing consensus on the need to
apply methods for predicting exchange rates.
Focusing on model types, numerous studies
aim to demonstrate the viability of using
various models to forecast exchange rates.
According to Lubecke (1998), Exchange rate
forecasting models are generally divided into
four primary categories: fundamental theories,
statistical models, artificial intelligence (AI),
and hybrid forecasting approaches. As Meese
and Rogoff (1983) stated, fundamental
models cannot fit better than random walks
and the outcome is still accepted until now.
Overall, while fundamental models offer
theoretical insights into exchange rate
mechanisms, they are not effective for
predicting specific numerical values,
particularly in short-term forecasts, which
remain a significant challenge (Wang, 2023).
According to West (1995) and Wei (2019),
statistical models such as generalized
autoregressive conditional heteroscedasticity
(GARCH) (Chortareas et al., 2011),
autoregressive integrated moving average
(ARIMA) models (Chortareas et al., 2011),
error correction models (ECM) (Moosa &
Vaz, 2016) , vector auto-regression (VAR)
(Carriero, Kapetanios, & Marcellino,
2009)and Bayesian theory. However, these
models face challenges in detecting the
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nonlinear patterns and complex relationships
between exchange rates and other economic
factors that lead to poor performance over
longer forecasting horizons in conventional
tests of forecast efficiency. AI approaches
have demonstrated superiority over traditional
models in empirical investigations, but they
face challenges in settings with large time
series fluctuations, including issues like
optimal parameter setting, misspecification,
underfitting, and overfitting (Wang, 2023).
Also, the empirical studies show that hybrid
models are more effective and robust than
single models (Wei, 2019).
According to Research (Poon & Granger,
2003) forecasting volatility in asset prices,
especially exchange rates, is critical for
investment analysis, derivative pricing, and
risk management. Furthermore, as market
volatility directly affects policymaking,
volatility forecasts serve as indicators of
financial market and economic vulnerability.
Evaluate minute based volatility will be
assessed in this paper to evaluate its
performances of high frequency data. High-
frequency data, rich in daily transaction
details, are instrumental not only for
measuring volatility but also for directly
estimating and evaluating models. Recent
methodological improvements have centered
on utilizing high-frequency data, with
numerous studies leveraging this
advancement to assess various volatility
forecasting models (Chortareas et al., 2011,
Carriero, Kapetanios, & Marcellino, 2009).
Current research primarily concentrates on
general exchange rate trends without specific
currency analysis; therefore, this study
specifically targets the EUR/USD exchange
rate.
The remainder of the paper is arranged as
follows. Section 2 reviews some of the main
findings and current arguments in the
volatility forecasting literature. Section 3
focuses on the data and methodology used in
this paper. Section 4 discusses forecast
evaluation methods. Section 5 evaluates the
estimation results and compares the out-of-
sample forecast performances of the models.
Finally, Section 6 concludes.

2. Literature Review

2.1 LSTM & CEEMDAN and Their

Combination
As one of the most significant methods in
time interval, Long Short-Term memory
(LSTM), a special kind of recurrent neural
network (RNN), was first introduced by
Hochreiter and Schmidhuber (1997) to solve
the problem of gradient vanishing. Being
compared with other methods, such as BPTT
and RTRL, LSTM is able to bridge time lags
over 1000 steps. It can rapidly acquire the
ability to differentiate between two or more
widely spaced instances of a certain element
in a given sequence, without relying on
suitable training examples with short time
intervals. Besides, when dealing with long
time lag problems, LSTM has the capability
to dispose of continuous value, distributed
representations and noise. It can even deal
with infinite state numbers in principle.
According to Gonzalez and Yu (2018), LSTM
has a better performance on modeling of time
series than other feedforward and recurrent
models.
As mentioned before, LSTM is able to deal
with problems brought by RNN, such as long-
term dependencies. It is a better choice for
researchers to apply to predict the trades of
currency exchange rate. WigesingheI (2020)
chose LSTM to forecast exchange rate
because of its ability of defining complicated
non-linear interactions between factors and
outcomes. According to WigesingheI (2020)'s
research, with a 95% confidence level, LSTM
model had better performance on predicting
five days exchange rates between GBR and
USD, USD and CAD, as well as AUS and
USD than ARIMA and the Exponential
Moving Average.
First introduced by Torres, Colominas,
Schlotthauer and Flandrin (2011), Complete
EEMD with Adaptive Noise (CEEMDAN) is
an algorithm developed by ensemble
empirical mode decomposition (EEMD).
Based on EEMD, CEEMDAN makes up for
EEMD's shortage of fully data-driven number
of models and completeness. Besides, the
number of sifting iterations it needs is less
than EEMD while reconstructing original
signal through summing models.
Guan (2022) used CEEMDAN-LSTM model
to forecast the stock price of Ping An Bank. In
Guan (2022)'s research, CCEEMDAN-LSTM
is proved that it can keep practical
information when vanishing noise in high
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frequency in order to gain denoised time
series. These characteries enable CEEMDAN-
LSTM performs better than simplex
CEEMDAN method and LSTM method.

2.2 Exchange Rate
In the field of forecasting currency exchange
rate, numerous methods are introduced and
created. For example, Li et al. (2019) tried to
combine deep Convolutional Neural Network
with deep-Recurrent Neural Network to make
advantages of their merit. The method they
proposed is named C-RNN，which is used to
predict the time series data of nine currencies'
exchange rates. It was verified that compared
to LSTM and CNN, the outcome came from
C-RNN is more precise as well as closer to
reality. Additionally, several researchers paid
attention to improve the LSTM model, which
is familiar to this research, to make the
prediction of currency exchange rates to be
more precise than before. Cao, Zhu, Wang,
Demazeau and Zhang (2020) develops a new
deep coupled LSTM approach, namely DC-
LSTM, to capture the complex couplings for
USD/CNY exchange rate forecasting.
Similarly, Jung and Choi (2018) introduced
autoencoder models and LSTM in their
research. Auto encoder models and LSTM
were combined to be a hybrid method, called
autoencoder-LSTM model to predict FX
volatility more accurately than the original
LSTM model.
This paper is committed to use the
CEEMDAN-LSTM method, which combines
the advantages of LSTM with CEEMDAN, to
predict as well as analyse the trend of the
exchange rate of euro.

3. Data and Methodology

3.1 Data, Properties and the Stylized Facts
The original data sets we use are 1 minute
interval spot foreign exchange rates of the
euro against the US dollar, provided by
Oriental Fortune Terminal.
The EUR/USD currency pair is one of the
most traded pairs in the forex market. It is
characterized by high liquidity, moderate
volatility, and low trading costs, which is due
to its narrow spreads. This currency pair is
highly sensitive to economic data as well as
policy announcements, especially from the
European Central Bank (ECB) and the

Federal Reserve. Apergis et al. (2012)
indicate that the European Central Bank and
the American Federal Reserve are able to
adjust their monetary policies and changing
interest rates in order to influence the
EUR/USD exchange rate. However, Apergis
et al. (2012) also point out that comparing to
the US Federal Reserve, ECB has a
disadvantage because of Euro Zone countries
do not have the same financial policy. In
addition, key economic indicators from the
Eurozone and the US, such as GDP and
inflation figures also have huge influence on it.
For example, Clostermann and Schnatz
(2000), in their study, indicate that the change
of oil price will lead to the variation of
exchange rate because of the dependence on
oil imports. Nearly all euro area countries get
oil depend on imports, thus the increasing of
oil price will cause the euro falls. The
EUR/USD pair experiences its highest trading
volumes and volatility during the European
and North American sessions, making it
becomes a favoured choice for traders seeking
to capitalize on these active periods. Often
viewed as a safe-haven pair during market
uncertainty, EUR/USD benefits from being
composed of two major reserve currencies.
Compared with other currencies, the exchange
rate of EUR/USD has the highest liquidity
(Mancini et al.,2009). Its price movements are
generally well-suited to technical analysis due
to its high liquidity and broad market
participation. Political events and policy
changes in the Eurozone and the US also
significantly impact the EUR/USD exchange
rate. This makes it an attractive and dynamic
pair for various trading strategies, from short-
term day trading to long-term positions.
The use of high-frequency data in this study
allows for capturing the intraday dynamics
and subtle market movements of the
EUR/USD pair. High-frequency data,
characterized by a very fine granularity,
provides detailed information about market
behaviour over short time intervals, such as
one-minute ticks used in this analysis. This
level of detail is particularly useful for
understanding how quickly markets react to
new information, for example, economic
indicator and policy changes. High-frequency
data can highlight patterns and market
anomalies that may not visible in lower-
frequency data, making it invaluable for
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trading strategy development and risk
management. Additionally, the richness of
high-frequency data enables more
sophisticated modelling techniques. For
example, those used in machine learning and
high-frequency trading algorithms, to predict
price movements and assess market volatility
with greater accuracy.
Empirical Mode Decomposition (EMD) is a
versatile and adaptive signal-processing
technique that has proven effective in
handling non-stationary signals. By
decomposing complex signals into simpler
components known as Intrinsic Mode
Functions (IMFs), EMD facilitates a detailed
analysis of various signal characteristics
(Jiusheng et al., 2006). This research aims to
utilize IMFs to examine both simulated and
real-world signals, providing insights into
their underlying patterns and behaviours
(Figure 1). Through this approach, the study
seeks to enhance our understanding of the
dynamic features in non-stationary data,
offering potential applications across various
fields in forex market signal analysis.
By using EMD method, each signal can be
decomposed as follows:

� � =
�=1

�

��� + �� # 1

In this context, �� represents an Intrinsic
Mode Function (IMF). Therefore, the signal
can be decomposed into � empirical modes
and a residual �� , which represents the mean
trend of � � . The IMFs �1, �2, …, �� span
different frequency bands, from high to low
frequencies. Each frequency band contains
distinct frequency components that vary with
changes in the signal.
Consider a non-stationary signal �(�) at
consists of a finite number of mutually
independent components ��(�), each having
an average value of zero.

� � = �1 � + �2 � + … + �� � =
�=1

�

�� �� # 2

The total energy of signal �(�) is computed
by integrating the square of the signal over its
full-time duration.
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Because of the orthogonality between
{�� � , � = 1,2, …, �} , the expression
simplifies or can be rewritten as:

−∞

∞

�� � �� ��  �� ≈ 0,  � ≠ �# 4

and then signal �(�) has total energy as
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Where �� represents the energy of the �-th
component �� � of �(�) . If Empirical Mode
Decomposition (EMD) is used to decompose
the signal and it is assumed that the
component �1 � is precisely the orthogonal
component �1 � of �(�) , then after
�1 � has been separated from �(�), the residual
signal energy is calculated as follows:

�2,…,� =
−∞

∞

�=2

�
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�  �� =
−∞

∞
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�

��
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Thus, the total energy of the signal �1 � ,
which has been isolated, along with the
energy of the remaining signal, referred to
as �total, equals the energy of the original
signal ��.

�total = �1 + �2,…,� = �1 + �2 + … + �� = ��# 7
If a certain component �1 � is not
orthogonal to x(t), then after �1 � is
separated from x(t), the total energy

of �1 � and the remaining signal, referred to
as �total  , would be

�total =
−∞

∞

�1
2 ��  �� +

−∞

∞

� � − �1 � 2�  �� = ��1 +
−∞

∞

�2 � − 2� � �1 � + �1
2 ��  �� = 2��1 + �� − 2

−∞

∞

� � �1 ��  ��# 8

In a broad sense, we can assume that
�1 � = ��� � + � � # 9

In this context, A represents a constant, and
e(t) denotes the error component of �1 � ,
which is completely independent from �� �
for all � = 1, 2, …, �. This independence

implies that e(t) is orthogonal to �� � across
all dimensions iii.
In this context, �� represents an Intrinsic
Mode Function (IMF). Therefore, the signal
can be decomposed into � empirical modes
and a residual �� , which represents the mean
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trend of � � . The IMFs �1, �2, …, �� span
different frequency bands, from high to low
frequencies. Each frequency band contains
distinct frequency components that vary with
changes in the signal.
Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise
(CEEMDAN) was developed to address the
limitations of traditional EMD by introducing
adaptive noise in a systematic manner.
Building on Ensemble Empirical Mode
Decomposition (EEMD), which reduces mode
mixing through the addition of white noise,
CEEMDAN further enhances the
decomposition process by scaling noise based
on the signal's characteristics at each step.
This method ensures a more accurate,
complete, and data-driven decomposition,
effectively isolating distinct frequency
components and minimizing noise-related
distortions. CEEMDAN's ability to handle
non-stationary and nonlinear data, along with
its reduced sensitivity to noise, makes it
particularly valuable for analyzing and
forecasting financial time series.
Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise
(CEEMDAN) is an advanced ensemble
learning method designed to overcome the
limitations of traditional Empirical Mode
Decomposition (EMD). CEEMDAN
introduces adaptive noise systematically
during the decomposition process, which
enhances the separation of different frequency
components within the time series, reducing
mode mixing and ensuring a more accurate
and data-driven decomposition (Torres et al.,
2011). This makes it particularly effective in
handling the complexities of non-stationary
and nonlinear data, such as exchange rates.
To evaluate the decomposition's effectiveness,
CEEMDAN follows these steps:
1. Initial Noise Addition:
A small amount of white noise is added to the
original signal, and EMD is performed to
obtain the first Intrinsic Mode Function
(IMF).
The noise is then removed, and the process is
repeated with different noise realizations. The
resulting IMFs are averaged to obtain the first
ensemble IMF.
2. Adaptive Noise Addition:
For subsequent IMFs, adaptive noise, which is
scaled based on the characteristics of the

residual signal, is added to the residual signal
(the original signal minus the sum of all
previously obtained IMFs).
EMD is applied to the noise-added residual,
and the process is iteratively repeated for each
IMF.
The mathematical expression for the
CEEMDAN process can be represented as:

� � =
�=1

�

IMF� �� + � � # 10

Where: �(�) is the original signal, IMF� � are
the Intrinsic Mode Functions obtained from
CEEMDAN, �(�) is the residual after all
IMFs are extracted.

3.2 Models and Estimation
The forecasting process begins with the
application of CEEMDAN to the high-
frequency EUR/USD exchange rate data,
decomposing the original signal into several
IMFs. Each IMF captures specific patterns
and frequencies within the data, allowing the
model to focus on different aspects of the time
series separately.
Following the decomposition, each IMF is
input into the LSTM network, which is
trained to predict future values based on the
patterns identified in the IMFs. The LSTM
network's architecture is designed to capture
the temporal dependencies within each IMF,
leveraging its ability to remember long-term
sequences of data. By training the LSTM on
each IMF individually, the model can
generate more accurate forecasts that account
for both short-term fluctuations and long-term
trends.
The final forecast is obtained by aggregating
the predictions from all IMFs, reconstructing
the original time series with enhanced
accuracy. This hybrid approach combines the
strengths of both CEEMDAN and LSTM,
leading to a more robust and reliable
forecasting model.

3.3 Forecasting
The process begins by preparing time series
data using a sliding window approach. The
Time Series function segments the dataset
into feature-label pairs, where the features are
sequences of past data points and the labels
are the future data points to be predicted. The
get_tain_val_test function then divides this
data into training, validation, and testing sets,
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while standardizing them to maintain
consistent scaling across all sets.
Next, an LSTM (Long Short-Term Memory)
model is defined and trained. The model
consists of an LSTM layer with 30 units that
processes the time series data and captures
temporal dependencies, followed by a Dense
layer for producing the final prediction. The
model is compiled with the mean squared
error loss function and is trained over 20
epochs using the training data, with validation
data used to monitor performance during
training.
Finally, the trained model predicts the values
in the test set. The actual and predicted values
are then plotted together to compare how
closely the model's predictions align with the
real data. This comparison is crucial for
evaluating the model's effectiveness in
capturing the underlying patterns in the time
series.
The process involves defining four functions
to evaluate the performance of the LSTM
model using different error metrics. The mean
absolute error (MAE) and mean squared error
(MSE) functions calculate the average
absolute and squared differences between the
actual and predicted values, providing a
measure of the model's accuracy. The
harmonic mean absolute error (HMAE) and
harmonic mean squared error (HMSE)
functions extend these metrics by normalizing
the errors relative to the mean of the predicted
values, offering a standardized way to assess
the magnitude of errors compared to the
predicted data. Finally, the calculated error
metrics are printed, allowing for a quick
evaluation of the model's performance in
predicting the test set.
The process starts by iterating through each
column in the decompose_data dataframe,
which contains different decomposed
components (such as IMFs) of a time series.
For each component, the get_tain_val_test
function is applied to split the data into
training, validation, and testing sets using a
sliding window approach. The time series data
is then standardized, and an LSTM model is
implemented and trained using the
implement_LSTM function. The trained
model is used to predict the test data, and the
predicted values along with the actual test
values are stored in respective lists. This
process is repeated for each time series

component.
The process involves utilizing a Support
Vector Regression (SVR) model to predict
time series data. Initially, the SVR model is
trained using the combined training data
consisting of x_train_all and y_train_all. After
training, predictions are made on the training,
validation, and test datasets separately,
resulting in y_pre_all_svr1, y_pre_all_svr2,
and y_pre_all_svr3. These predicted values
are then concatenated horizontally to create a
single array of predictions, referred to as
y_pre_all_svr. Similarly, the actual values
from the training, validation, and test sets are
concatenated to form y_all_label. Finally, a
plot is generated to visually compare the
actual values with the predicted values across
the entire dataset.
The process involves applying an
AutoRegressive (AR) model to predict a time
series. Initially, the time series data (RVs) is
split into training and testing sets, with 90%
of the data allocated for training. An AR
model of order 2, which uses two lagged
values, is then fitted to the training data. After
fitting, the model generates predictions in two
stages: it first predicts the values for the
training set to assess the fit (predict_AR_1),
and then it forecasts the future points for the
test set (predict_AR_2). These predictions are
combined into a single continuous series
(predict_all_ar). The actual values from the
entire dataset are also combined to create
y_all_label, allowing for a comparison
between the actual and predicted values.

4. Evaluation of Forecast Methods

4.1 Support Vector Regression
Support Vector Regression (SVR) is the most
common regression analysis method based on
Support Vector Machines (SVM) (Basak et al.,
2007). The core idea of SVR is to find the
optimal regression function by introducing the
"ε-insensitive loss function," where most data
points lie within the "ε-tube" of the regression
function, then create a multi-objective
function from the loss function and the
geometrical properties of the tube (Awad et
al., 2015). Meanwhile, it keeps the model
complexity as low as possible. SVR excels at
handling high-dimensional data and nonlinear
relationships. By using different kernel
functions, SVR is able to capture nonlinear
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patterns in data, making it suitable for
complex time series forecasting tasks, such as
exchange rate prediction.

4.2 Autoregressive Model
Autoregressive Model (AR) is a linear
time series model that assumes the current
value is a linear combination of past
values plus a random error term. The key
factor in AR models is the "lag order,"
which refers to how many past time
points' values are used to predict the
current value. Simple AR models are
effective in capturing linear trends and
seasonal components in time series, but
they may perform poorly when dealing with
nonlinear relationships or structural changes.

4.3 Heterogeneous Autoregressive Model
Heterogeneous Autoregressive Model
(HAR) is firstly introduced by Corsi
(2009) to realize the goal of presenting the
primary observable characteristics of
financial returns in a highly manageable
and concise way. It is an extended time
series model specifically designed for
financial data with heterogeneous
volatility. As a multi-scale autoregressive
model, it considers volatility over
different time scales, such as daily,
weekly, and monthly, allowing it to better
capture the volatility structure in financial
markets.

4.4 Functions
Mean Squared Error (MSE) is adopted as
one of the primary evaluation metrics to
assess the performance of the LSTM-
CEEMDAN forecasting technique.

��� =
1
�

�=1

�

�� − �� �
2� # 11

In this context, n stands for the number of
forecast samples, �� represents the actual
values of the exchange rate, and�� � is the
predicted values of the exchange rate. By
squaring the error �� − �� � , the model
eliminates the effect of the error’s sign
and leads all errors contribute positively.
The process of squaring also amplifies

larger errors, increasing the model’s
sensitivity to significant deviations.
MSE provides a direct measure of the
performance of the model in foreign
exchange rate forecasting. The smaller the
MSE values are, the closer the model’s
predictions are to the actual exchange
rates values, which indicates a higher
prediction accuracy. Since MSE is more
sensitive to larger errors, it helps assess
how the model performs when dealing
with large fluctuations in the market.
To assess the accuracy of the LSTM-
CEEMDAN method, Mean Absolute
Error (MAE) is also applied. MAE
reflects the average absolute difference
between the predicted values and the
actual values.

��� =
1
�

�=1

�

�� − �� �
2� # 12

Same as MSE, n represent the number of
forecast samples, y is the actual values of
exchange rate while �� � is the forecast
values of exchange rate here. The absolute
error, �� − �� � , sum up values of each
time point. This operation ensures that
every part of the error contribute to the
total error, no matter it is negative or
positive. Compared to MSE, MAE is less
sensitive to extreme errors. Thus, it can
more fairly reflect the performance of the
method.
Comparing with MSE, it magnifies the
impact of larger errors due to squaring and
making it more sensitive to fluctuations in
the model’s bias. If it is crucial to focus
on large prediction mistakes, MSE is
typically a more appropriate method. On
the other hand, MAE is more suited for
evaluating the overall deviation across all
forecasts.
Except for MAE and MSE, their
variations Harmonic Mean Absolute Error
(HMAE) as well as Harmonic Mean
Squared Error (HMSE) are used in this
study to analyse the reliability of the
LSTM-CEEMDAN method.
Compared with MAE, HMAE uses
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harmonic mean instead of the arithmetic
mean in the function. The harmonic mean
is often used in situations that user want to
average rates or ratios and gives more
weight to smaller values.

���� =
�

�i=1
� 1

��

# 13

In this context, n still means the number
of forecast samples, �� represents the
error for the ith prediction, calculated as
the difference between the predicted value
and the actual value.
The HMAE metric tends to penalize large
errors more than MAE since the harmonic
mean is influenced more by smaller
values. It is particularly useful when
reducing outliers’ impact on the overall
error metric.
HMSE is also the variation that uses
harmonic mean instead of the arithmetic
mean in the function.

���� =
�

�=1

�
1
��

2�

 # 14

The meanings of n and �� are same as in
HMAE. Also, similar to HMAE, HMSE
emphasizes smaller errors due to the
harmonic mean's properties, while still
squaring the errors like MSE, which
penalizes larger errors more heavily. The
squared term ensures that larger errors
still have a significant impact on the
metric, but the harmonic mean reduces the
overall influence of outliers compared to
MSE.
5. Results
These IMFs represent the high-frequency
components of the signal, typically containing
more noise or detailed information. The
waveforms in IMF 1 to IMF 4 show rapid
fluctuations, indicating that these parts have
captured fast changes within the signal. These
components are crucial for analyzing high-
frequency noise or sudden events in the signal.
Mid-Frequency Component Analysis (IMF
5 to IMF 8):
These IMFs display the mid-frequency
components of the signal, often associated
with periodic trends or specific patterns. The

waveforms in IMF 5 to IMF 8 gradually
become smoother, suggesting that these
components may have captured cyclical
patterns or regular oscillations
within the signal. This makes them useful for
periodic analysis or trend detection.
Low-Frequency Component Analysis (IMF
9 to IMF 11):

Figure 1. High-Frequency Component
Analysis (IMF 1 to IMF 4):

These IMFs represent the low-frequency
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Table 1. Analysis of IMF1-IMF11
IMF count mean std skew kurtosis J-B Q(10)
IMF1 4987 -0.00032 0.005877 -0.0016 6.106947 7749.552 1188.52
IMF2 4987 -1.22E-05 0.003064 0.055941 10.19024 21579.89 4208.493
IMF3 4987 -4.22E-05 0.00265 -0.02754 6.912068 9928.228 9004.275
IMF4 4987 -5.46E-06 0.002144 0.422843 15.76393 51785.11 14028.55
IMF5 4987 -0.00013 0.002698 -0.87629 25.99861 141090.4 27043.33
IMF6 4987 -8.67E-06 0.001556 0.02678 4.050747 3410.157 39659.9
IMF7 4987 -5.15E-05 0.002371 -0.00985 7.69091 12290.98 46714.34
IMF8 4987 -0.00042 0.002752 0.026669 0.065694 1.487907 49135.19
IMF9 4987 -0.00099 0.004116 -0.30251 -0.71474 182.2132 49719.57
IMF10 4987 0.00138 0.003373 0.011835 -1.34242 374.575 49847.47
IMF11 4987 0.008356 0.001165 0.958886 -0.56006 829.4039 49697.13
Res 4987 3.311972e-20 1.835131e-18 1.017122 22.99659 110749 36.30548
components of the signal, typically related to
overall trends or long-term fluctuations. The
waveforms in IMF 9 to IMF 11 are smooth
and slow, reflecting the main trend or long-
term patterns in the signal. These parts are
important for trend analysis or understanding
the fundamental structure of the signal.
Residual (Res) Analysis:
The residual component shows what remains
after extracting all the IMFs from the signal,
and it should typically be close to zero. The
residual in the graph is very small, nearly zero,
indicating that the EMD successfully captured
the main components of the signal. The near-
zero residual suggests that the decomposition
was accurate and effectively removed noise
and details while retaining the key
information in the signal.
According to Table 1, analysis is below:
Mean and Standard Deviation:
The mean values for all IMFs and the residual
are very close to zero, which is typical for
components extracted by Empirical Mode
Decomposition (EMD). This indicates that the
decomposition has effectively separated the
signal into components without introducing
significant bias.
The standard deviations vary, with IMF 1
having the highest standard deviation
(0.005877), indicating that it contains the
most variability or noise. As the IMF number
increases, the standard deviation generally
decreases, especially in the higher IMFs,
indicating that these components capture less
variability and represent smoother, low-
frequency trends.
Skewness:
Skewness measures the asymmetry of the
distribution. Most IMFs have skewness values

close to zero, indicating a fairly symmetric
distribution. However, IMF 5 has a relatively
high negative skewness (-0.876294), which
suggests a longer tail on the left side, possibly
indicating the presence of outliers or sudden
drops in the signal.
IMF 11 has a positive skewness (0.958886),
indicating a longer tail on the right side,
suggesting occasional spikes or upward trends
in this component.
Kurtosis:
Kurtosis measures the "tailedness" of the
distribution. Several IMFs, particularly IMF 2,
IMF 4, and IMF 5, have high positive kurtosis
values, indicating that these components have
heavy tails and are more prone to producing
extreme values. This suggests that these IMFs
might capture significant events or anomalies
within the original signal.
Negative kurtosis in IMF 9 and IMF 10
suggests a distribution flatter than a normal
distribution, possibly indicating less
pronounced peaks or troughs in these
components.
Jarque-Bera (J-B) Statistic:
The Jarque-Bera test statistic is used to test
whether the data has the skewness and
kurtosis matching a normal distribution. A
higher J-B statistic indicates a departure from
normality. IMF 5 shows an extremely high J-
B statistic (141090.403401), indicating a
significant deviation from normality, likely
due to its skewness and high kurtosis.
Similarly, IMF 2, IMF 3, IMF 4, and IMF 7
also show high J-B values, indicating that
these components do not follow a normal
distribution and might contain significant non-
Gaussian features.
Q(10) Statistic:
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The Q(10) statistic measures autocorrelation
within the IMFs over 10 lags. High values
indicate significant autocorrelation,
suggesting that these components contain
patterns or cycles that persist over time.
IMF 10 and IMF 11 have extremely high
Q(10) values, suggesting strong
autocorrelation and indicating these
components likely represent long-term trends
or persistent cycles in the original signal.
The lower IMFs (IMF 1 through IMF 6) show
lower Q(10) values, suggesting that these
components are less correlated and may
capture more noise or short-term variations.
The analysis of the IMFs and residual reveals
that the Empirical Mode Decomposition
(EMD) effectively separated the original
signal into distinct components. The lower
IMFs (IMF 1 to IMF 5) capture high-
frequency variations and noise, characterized
by significant non-normality and occasional
extreme values. In contrast, the higher IMFs
(IMF 6 to IMF 11) reflect lower-frequency
trends and persistent patterns, with strong
autocorrelation particularly evident in IMF 10
and IMF 11. The residual component shows
minimal variance, indicating that the
decomposition accurately captured the main
features of the signal.

Figure 2 .LSTMModel of the Actual Time
Series Data

The Figure 2 shows that the LSTM model
effectively follows the general trend of the
actual time series data. The predicted values
(red line) align reasonably well with the actual
values (blue line), indicating that the model
has successfully learned the overall pattern in
the data.
However, the predictions are noticeably
smoother than the actual data, failing to
capture the more extreme spikes and
fluctuations. This suggests that while the
model is good at predicting the central trend,
it may not be as effective at handling high-
frequency noise or sudden changes in the data.
The analysis of the model's performance,

based on the provided metrics, indicates that
the LSTM model has achieved reasonable
accuracy in predicting the time series data.
The Mean Absolute Error (MAE) of 0.0034
suggests that, on average, the model's
predictions are very close to the actual values,
with an error margin of approximately 0.0034
units. The Mean Squared Error (MSE) of
1.73e-05 further supports this, indicating that
the squared deviations between predicted and
actual values are minimal, reflecting a good
overall fit.
Figure3 Higher-Frequency Components (Top
Panels)
However, the Harmonic Mean Absolute Error
(HMAE) of 0.6466 and Harmonic Mean
Squared Error (HMSE) of 0.6208 suggest that
when normalized relative to the mean of the
predicted values, the errors are relatively
significant. This implies that while the model
captures the general trend, there are still
considerable discrepancies, especially when
considering the scale of the predictions. This
aligns with the earlier observation from the
plot where the model successfully follows the
overall pattern but smooths out sharp
fluctuations, leading to underestimation or
overestimation in regions with high volatility
or spikes.
In summary, the LSTM model is effective in
capturing the main trends of the time series
but may require further refinement or
additional features to better handle extreme
variations and reduce the normalized errors.
For the higher-frequency components of
CEEMDAD, the predictions closely follow
the actual data, though some deviations are
evident. The model captures the general
oscillatory behavior, but it smooths out some
of the sharper peaks and troughs. This is
expected, as LSTM models often tend to
smooth out noise while capturing underlying
trends.
Mid-Frequency Components (Middle
Panels):
In the middle-frequency components of
CEEMDAD, the model performs well, with
predictions almost mirroring the actual values.
The alignment between the red and blue lines
is strong, indicating that the model is
effectively capturing the key patterns in these
components. This suggests that the LSTM
model is particularly adept at modeling the
mid-range frequencies where the signal's
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structure is more regular and less noisy.

Figure 3. Higher-Frequency Components
(Top Panels)

Figure 4. Prediction of IMFs
Low-Frequency Components (Bottom
Panels):
For the low-frequency components of
CEEMDAD, the predictions are very close to
the actual values, with minimal discrepancies.
The model effectively captures the long-term

trends in the data, as seen by the near-perfect
overlap of the predicted and actual lines. The
low-frequency trends are generally easier to
predict due to their smoother, more
predictable nature, which the LSTM model
handles well.
Based on Figure 4, the aggregated prediction,
which sums the individual predictions from
the decomposed components (IMFs), closely
follows the actual time series data, indicating
that the model effectively captures the overall
trends and patterns. However, the predicted
values sometimes lag or overshoot the actual
values, particularly in highly volatile regions
with sharp spikes. This suggests that while the
model performs well in approximating the
general dynamics of the time series, it
struggles with accurately predicting rapid
fluctuations, highlighting a common challenge
in time series forecasting that may require
further refinement for improved accuracy.
The error metrics indicate that the LSTM
model's performance is fairly accurate in
predicting the time series after aggregating the
predictions of all decomposed components.
The Mean Absolute Error (MAE) of 0.0024
suggests that, on average, the predictions are
very close to the actual values, with a small
error margin. The Mean Squared Error (MSE)
of 9.98e-06 reflects even smaller squared
deviations between the predicted and actual
values, indicating a good fit overall. However,
the Harmonic Mean Absolute Error (HMAE)
of 0.4553 and Harmonic Mean Squared Error
(HMSE) of 0.3541 suggest that when the
errors are normalized relative to the mean of
the predictions, the discrepancies are still
somewhat significant. This indicates that
while the model captures the overall trend
effectively, it may still struggle with certain
patterns, particularly in areas with sharp
changes or higher volatility, as seen in the
earlier analysis.
The figure 5 shows the actual time series
values in blue and the predicted values from
the SVR model in red. The results indicate
that the SVR model produces a relatively
constant prediction line that does not capture
the variability present in the actual data. This
flat prediction suggests that the model is
either underfitting or failing to learn the
underlying patterns in the data. The SVR's
inability to follow the peaks and valleys of the
actual time series data points to a significant
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mismatch between the model's predictions and
the true values, especially in regions with high
volatility or rapid changes. This outcome
implies that the SVR model may not be well-
suited for this particular time series, possibly
due to the complexity or noise within the data
that the model struggles to handle.

Figure 5. Actual Time Series Values and
the Predicted Values from the SVR

Model
The error metrics indicate that the SVR
model's performance in predicting the time
series data is suboptimal. The Mean Absolute
Error (MAE) of 0.0588 suggests that the
model's predictions, on average, deviate
significantly from the actual values. The
Mean Squared Error (MSE) of 0.00347
further emphasizes this, indicating larger
squared deviations and pointing to substantial
prediction errors. The Harmonic Mean
Absolute Error (HMAE) of 0.9210 and
Harmonic Mean Squared Error (HMSE) of
0.8523 reveal that when these errors are
normalized relative to the mean of the
predictions, the discrepancies remain notably
high. These metrics, combined with the flat
prediction line observed in the plot, suggest
that the SVR model is underfitting and failing
to capture the underlying patterns in the data,
leading to poor predictive performance,
especially in capturing the time series'
volatility and variability.
The figure 6 compares the actual time
series values (in blue) with the predicted
values from the AR model (in red). The AR
model's predictions are relatively smooth and
fail to capture the sharp spikes and variability
present in the actual data. The predicted
values tend to stay within a narrow range,
which indicates that the AR model is
underfitting the data, especially in periods of
high volatility. The model does not effectively
track the large fluctuations seen in the actual
time series, particularly during peak periods,
resulting in significant discrepancies. This

suggests that the AR model, while potentially
useful for capturing general trends in simpler
or more stable time series, may not be well-
suited for complex data with rapid changes
and high volatility as seen in this case.

Figure 6. Comparison of Actual Time
Series Values with the Predicted Values

from the AR Model
The error metrics suggest that the
AutoRegressive (AR) model performs
moderately well in predicting the time series
data. The Mean Absolute Error (MAE) of
0.0044 indicates that the model's predictions
are, on average, relatively close to the actual
values, though some discrepancies are present.
The Mean Squared Error (MSE) of 2.53e-05
further supports this, showing that the squared
deviations between the predicted and actual
values are relatively small, but not negligible.
The Harmonic Mean Absolute Error (HMAE)
of 0.5450 and Harmonic Mean Squared Error
(HMSE) of 0.3914 reveal that, when
normalized relative to the mean of the
predictions, the errors remain somewhat
significant. This suggests that while the AR
model captures the general trend of the time
series to some extent, it struggles with
accurately predicting rapid changes and high
volatility, as indicated by the smoother
prediction line seen in the plot compared to
the actual data's sharp fluctuations.

Figure 7. OLS Regression Results
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Notes:
[1] R² is computed without centering
(uncentered) since the model does not contain
a constant.
[2] Standard Errors assume that the
covariance matrix of the errors is correctly
specified.
The OLS regression results indicate that the
model explains approximately 35.9% of the
variance in the dependent variable, as
reflected by the R-squared and adjusted R-
squared values. The coefficient for RV is
0.5994 and is statistically significant, with a t-
value of 50.157 and a p-value of 0.000,
indicating a strong positive relationship
between RV and the dependent variable. The

F-statistic of 2516.0, with a corresponding p-
value of 0.00, suggests that the model as a
whole is statistically significant. The Durbin-
Watson statistic of 2.556 suggests there is no
significant autocorrelation in the residuals.
However, the high values for the Omnibus
and Jarque-Bera tests, along with a skewness
of 1.920 and kurtosis of 16.898, indicate that
the residuals may deviate from normality.
While the model is statistically significant, the
relatively low R-squared and potential issues
with the residuals suggest that the model may
not fully capture all the underlying patterns in
the data, and further refinement may be
necessary.

Figure 8. Comparison between the Actual Time Series Values and the Predicted Values
The figure 8 shows the comparison between
the actual time series values (in blue) and the
predicted values (in red) from the model. The
predictions closely follow the general trend of
the actual data, particularly in periods of
lower volatility. However, the model struggles
to capture the sharp spikes and significant
fluctuations seen in the actual data,
particularly during periods of high volatility.
This is reflected in the relatively smooth
prediction line compared to the more jagged
actual data. The discrepancy suggests that
while the model is effective at capturing the
broader trends, it may be underfitting,
particularly when it comes to modeling
extreme values or rapid changes in the time
series. This is consistent with the earlier
analysis of the model's performance metrics,

which indicated that while the model is
statistically significant, it does not fully
capture all the underlying patterns in the data,
leading to some missed dynamics, especially
in volatile regions.
The error metrics indicate that the model
performs moderately well in predicting the
time series but has some significant
shortcomings. The Mean Absolute Error
(MAE) of 0.0039 suggests that the predictions
are relatively close to the actual values on
average, which is a positive sign. The Mean
Squared Error (MSE) of 2.67e-05, while low,
also indicates that the squared deviations are
small, though not negligible. However, the
Harmonic Mean Absolute Error (HMAE) of
1.2965 and the Harmonic Mean Squared Error
(HMSE) of 2.9203 are quite high, indicating
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that when errors are normalized relative to the
mean of the predictions, they become
significantly more pronounced. This suggests
that while the model captures the general
trend, it struggles with larger errors in certain
parts of the time series, especially in areas
with high volatility or extreme values, as
reflected in the plot. The model's difficulty in
accurately predicting sharp spikes and rapid
fluctuations is further emphasized by these
higher normalized error metrics, pointing to a
potential underfitting issue where the model
fails to fully capture the complexity of the
data.

6. Conclusions
This article presents a comprehensive analysis
of various machine learning models, including
LSTM, CEEMDAD, SVR, AR, and HAR, in
forecasting exchange rates, particularly
focusing on the EUR/USD pair. The results
indicate that the **LSTM model** combined
with **CEEMDAD decomposition**
effectively captures the general trends in the
time series, especially in mid and low-
frequency components, but struggles with
high-frequency fluctuations, leading to some
underfitting. The **SVR model**, however,
shows significant limitations, producing
overly smooth predictions that fail to capture
the volatility and variability of the actual data,
making it less suitable for this time series. The
**AR model** performs moderately well in
simpler, less volatile periods but fails to
adequately capture sharp spikes and rapid
changes, resulting in a smooth prediction line
that misses key fluctuations. The **HAR
model** shows similar challenges, with
difficulty in predicting extreme values or
rapid changes, despite capturing the broader
trends. The overall conclusion suggests that
while LSTM with CEEMDAD decomposition
offers the most promise among the models,
there is still a need for further refinement to
better handle the complexities and volatility
inherent in exchange rate time series data.
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