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Abstract ： In this paper, we discuss the
number of equivalence classes when a
permutation group acts on a finite set which
consist of mappings. First, we utilize some
general permutation subgroups to act on a
finite set consists of injective mappings. Next,
we extend the case of injective mappings to all
mappings from a finite set to a finite set.
Moreover, we show the case when some
general permutation subgroups act on a finite
set consists of some special mappings from a
finite set to a finite set. Finally, we give some
applications of this topic.
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1. Introduction
In this paper, we discuss the number of
equivalence classes when a permutation group
acts on a finite set which consist of mappings. In
many cases, we are not interested in the number
of objects, but rather the number of equivalence
classes of objects with respect to an appropriate
equivalence relation. Moreover, these
equivalence relations are often induced by
certain permutation groups in a natural way. [4,
Chapter 37] gives four examples for the number
of equivalence classes of mappings. However,
they only discuss the cases of equivalence
relations induced by cyclic and dihedral
permutation subgroups. Generally, there are
many other permutation subgroups.
As we shown above, in this paper, we introduce
some general permutation subgroups to act on a
finite set consists of mappings. Then we obtain
some general equivalence relations on this finite
set. It’s natural and logical to discuss the number
of equivalence classes of these general
equivalence relations. In Section 3.1, we utilize
some general permutation subgroups to act on a
finite set consists of injective mappings from a
finite set to another finite set. Next, we utilize
some general permutation subgroups to act on a
finite set consists of all mappings from a finite

set to another finite set in Section 3.2. Moreover,
we show the case when some general
permutation subgroups act on a finite set
consists of some special mappings in Section 3.3.
Finally, we give some applications of this topic
in Section 4.

2. Preliminaries and Background
In this section, we review some preliminaries
and notations of group theory in [1, 3, 4].

2.1 Preliminaries
First, we review some basic facts of set theory.
For a nonempty set A, the number of elements in
A will be denoted by |A| . A equivalence relation
on A is a relation that holds between certain
pairs of A. We may write it as a ~ b and speak of
it as equivalence of a and b. An equivalence
relation is required to be:
• reflexive: For all a∈ A, a ~ a.
• symmetric: If a ~ b, then b ~ a.
• transitive: If a ~ b and b ~ c, then a ~ c.
Moreover, for any a ∈ A, the equivalence class
of a ∈ A is defined to be {x∈ A | x ~ a}. Also,
a partition of A is a collection {Ai ≤ A | i ∈ I},
where I is an indexing set and
• A = ui∈IAi ,
• Ai ∩ Aj = 0 , for all i,j∈ I with i j.
If ~ is an equivalence relation on A, then the set
of all equivalence classes form a partition of A.
Conversely, for any partition of A, the
corresponding equivalence relation is defined by
the rule that a ~ b if a and b lie in the same
subset of the partition.
Next, we introduce some concepts of groups. A
set G with a binary operation * is called a group
if the following conditions are satisfied:
1. The operation * is closed, i.e. a * b ∈ G for
all a,b∈ G.
2. The operation * is associative, i.e. (a * b) * c
= a * (b * c) for all a,b,c∈ G.
3. There exists an identity element e ∈ G such
that a * e = e * a = a for all a∈ G.
4. For every element a ∈ G, there exists an
inverse a −1∈ G such that a * a −1 = a −1 * a =
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e.
Moreover, a group is called abelian if the
operation * is commutative, i.e. a * b = b * a for
all a,b ∈ G. Also, the order of G, denoted |G|,
is defined as the number of elements in G. If |G|
< ∞, then G is a finite group. Furthermore, a
nonempty subset H of G with binary operation *
is a subgroup of G if H is closed under products
and inverses, that is,
• for any a,b∈ H , a * b∈ H ,
• if a∈ H, then a −1∈ H.
If {Hi : i ∈ I} is a nonempty family subgroups,
then ∩i∈IHi is a subgroup of G. For any
nonempty subset K of G, let {Hi : i ∈ I} be the
family of all subgroups of G which contain K.
Then ∩i∈IHi is called the subgroup of G
generated by the set K and denoted (K〉.
Finally, we introduce some facts of group
actions. For a nonempty finite set A and a finite
group G, an action of the group G on the set A is
a function ϕ : G × A → A satisfying the
following conditions:
• ϕ(e,a) = a for all a ∈ A, where e is the identity
of G.
• ϕ(g1 ,ϕ(g2 , a)) = ϕ(g1g2 , a) for all a∈ A and
g1 , g2 ∈ G. Moreover, let ~ be a binary
operation on set A defined by
a ~ b if and only if a = ϕ(g, b) for some g∈ G
Then the relation ~ is an equivalence relation on
A. Therefore, the equivalence classes of ~ forms
a partition of set A. As for the number of
equivalence classes of ~, we have the following
lemma
Lemma 2.1 (Burnside’s Lemma). Let G be a
finite group acting on a finite set A, then the
number of equivalence classes of ~ is given by

where Fix(g) = {a ∈ A | ϕ(g, a) = a} is called
the set of fixed points of g∈ G.

2.2 Formulation
In this subsection, we formulate the our main
problem of this paper. For simplicity, we only
discuss mappings
from a finite ordered set X = {1, 2,..., r} to
afinite set Y = {y1 , y2,..., yn } . We denote the
set of all mappings from X to Y as Fr,n , and
Fr,n has nr elements. Next, we discuss some
special types of mappings in Fr,n. A mapping a :
X → Y is injective if and only if x1 x2 implies

a(x1 ) a(x2 ) for any x1 , x2 ∈ X . Also, a
mapping a : X → Y is surjective if and only if
for each y ∈ Y , there is a x ∈ X such that a(x)
= y. A mapping a : X → Y is a permutation if
and only if a is surjective and injective. If a is a
permutation, then r = n. However, the converse
is not true.
Let Sr be the set of all permutations from X onto
X itself with a binary operation of composition
∗ . Then Sr is a group which is called the
symmetric group on the set X . For a π ∈ Sr
and pairwise different elements x1 , x2 , ..., xs
∈ X, if
π(xi ) = xi+1, i = 1, 2, ..., s − 1, π(xs ) = x1 , π(x)
= x, x∈ X\{x1 , x2,..., xs } ,
then we call π the s-cyclic permutation, which is
denoted by (x1 x2...xs ), or πs for short. Each
permutation g ∈ Sr can be represented as the
composition of some pairwise disjoint cyclic
permutations in Sr , that is, there exist some
pairwise disjoint cyclic permutations π 10 , ...,π
1d1 ,π20 , ...,π2d2 , ...,πr0 , ...,πrdr ∈ Sr such
that
g = π 10 ∗ ...π 1d1 ∗ π20 ∗ ... ∗ π2d2 ∗ ...
∗ πr0 ∗ ... ∗ πrdr ,
where 1d1 +2d2 + ... +rdr = r , πij1 πij2 , πi0 =
(i), i = 1, 2, ...,r , j1 , j2 = 1, 2,..., di , and j1 j2 .
We call g has the form of 1d1 2d2 ...rdr .
Moreover, we call g is an even permutation if
only and ifr − (d1 + d2 + ... + dr ) is an even
number. Otherwise, we call g odd permutation.
For a nonempty subset Mr,n of Fr,n and a
nonempty subgroup H of Sr , we introduce an
action ϕ : H × Mr,n → Mr,n , and for any g∈ H
and a∈Mr,n ,
(ϕ(g, a))(x) = a(g(x)), ∀x∈ X.
Thus, we obtain a equivalence relation ∼ and a
partition of Mr,n. According to Lemma 2.1,
when the subgroup H acts on Mr,n , the number
of equivalence classes are

g |Fix(g)| ,
where Fix(g) = {a ∈ Mr,n | a(g(x)) = a(x), ∀x
∈ X} . In the next section, we discuss the
number of equivalence classes of ∼ with some
special subsets Mr,n and subgroups H.

3. Main Result
In this section, we discuss the number of
equivalence classes of ∼ with some subsets of
Fr,n and subgroups of Sr . First, we introduce
how to obtain subgroups in Sr . For a subset K
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of Sr , we can build the subgroup ⟨ K⟩ .
Specially, for any element g ∈ Sr , ⟨ g⟩ is a
general cyclic subgroup in Sr .
Next, we list some subgroups of symmetric
group Sr (permutation groups).
1. Ir = ⟨ (1)⟩ is the identity subgroup of Sr
and has only one element which is the identity.
2. Cr = ⟨ (12 ... r)⟩ is a cyclic group of Sr and
has r elements. Each element in Cr has the form
of . If d | r, then there exists φ(d) elements of
the form in Cr , where φ is the Euler function.
If d ∤ r , then Cr does not have an element of
the form .
3. D2r = ⟨ (12 ... r), (r(r − 1) ... 1)⟩ is a
dihedral group of Sr (r ≥ 3), and it has 2r
elements. Cr is a subgroup of D2r, which has r
elements. As for the remaining r elements, we
have the following two cases:
• Ifr is an odd integer, then there exists r

in Cr .
• If r
elements of the form 122

in Cr .
4. Sr itself is a trivial subgroup and has r!
elements. For any integer solution of 1d1 + 2d2
+ ... + rdr = r ,
there exists
r!
d1 !d2 !...dr!1d1 2d2 ...rdr
elements of the form 1d1 2d2 . . . rdr .
5. Ar = ((123), (124), ..., (12r) 〉 is the
alternating group consists of all even
permutations in Sr (r ≥ 3).

an even number, there exists
r!
d1 !d2 !...dr!1d1 2d2 ...rdr
elements of the form 1d1 2d2 . . . rdr .
Next, we define Sk be the subset Sr , and for any
g ∈ Sk , g1 is a permutation from {1, 2,..., k}
onto {1, 2,..., k} and
g1 (x) = x, x∈ {k + 1, k + 2,..., r}. (1)

On the other hand, we define S
′

r−k be the subset
of Sr , and for any g2∈ S

′

k , g2 is a permutation
from
{k + 1, k + 2,..., r} onto {k + 1, k + 2,..., r} and
g2 (x) = x, x∈ {1, 2,..., k}. (2)
By definition, it is clear that S

′

k is isomorphic to
Sk and S

′

r−k is isomorphic to Sr−k, respectively.
Also,

we define C
′

k be the subset of Sr , and for any g1
∈ C

′

k , g1 is a k-cyclic permutation from {1,
2,..., k} onto
{1, 2,..., k} and
g1 (x) = x, x∈ {k + 1, k + 2,..., r}. (3)
On the other hand, we define Cr−k be the subset
of Sr , and for any g2 ∈ Cr−k , g2 is a
permutation from {k + 1, k + 2,..., r} onto {k + 1,
k + 2,..., r} and
g2 (x) = x, x∈ {1, 2,..., k}. (4)
By definition, it is clear that C

′

k is isomorphic to
Ck and C

′

r−k is isomorphic to Cr−k, respectively.
Similarly, we can define D

′

2k , D
′

2r−2k , A
′

k and
A

′

r−k, where k ≥ 3 and r — k ≥ 3.
For any subgroup H1 in S

′

k and subgroup H2 in
S

′

r−k, since H1 * H2 = H2 * H1 and H1 ∩ H2 =
{(1)},
H1 *H2 is the inner direct product of H1 and H2
in Sr . Thus, it follows that H1 *H2 has |H1 ||H2
| elements. By the subgroups listed above, we
can induce more subgroups of Sr by inner direct
product operation. For example,
6. C

′

k * C
′

r−k = ((12...k), ((k + 1)(k + 2)...r)〉has
k(r — k) elements.
7. D2k * D2r−2k = ((12...k), (k(k — 1)...1), ((k
+ 1)(k + 2)...r), (r(r — 1)...(k + 1))〉has 4k(r —
k) elements. We consider the following four
cases:
8. A

′

k * A
′

r−k = ((123), (124), ..., (12k), ((k +
1)(k + 2)(k + 3)), ..., ((k + 1)(k + 2)r)〉 has

elements.
9. C

′

k * D
′

2r−2k = ((12...k), ((k + 1)(k + 2)...r),
(r(r — 1)...(k + 1))〉has 2k(r — k) elements.
10. Sk * Sr−k has k!(r — k)! elements.
When an inner direct product group H1 * H2
acts on Mr,n , if a is equivalent to b in Mr,n ,
then there exists g∈ H1 * H2 such that g = g1 *
g2 , where g1∈ H1 , g2∈ H2 and
a(g(x)) = b(x), Yx∈ X.
Since g1 ∈ H1 and g2 ∈ H2 , by (1) and (2), it
follows that
a(g1 (x)) = b(x), ∀x∈ {1, 2,.., k},
a(g2 (x)) = b(x), ∀x∈ {k + 1, k + 2,..., r} .
Conversely, it is easy to check that a is
equivalent to bin Mr,n. Therefore, the number of
equivalence classes of Mr,n are

′ ′

′ ′

′ ′

′ ′
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g1 1 |Fix(g1 )|), g2 2 |Fix(g2 )|),.

3.1 The Set of all Injections from X to Y
In this subsection, we discuss the set of all
injections from X to Y , which is denoted by
Xr,n. Ifr > n, then Xr,n = ∅ . Otherwise, |Xr,n |
= . Thus, we only the case when r ≤ n.
When the subgroup H acts on Xr,n , for any g∈
H, if a ∈ Xr,n is a fixed point of g, then a(g(x))
= a(x) for any x ∈ X . Since a is an injection
from X to Y , it follows that g(x) = x for any x
∈ X, which ensures that g is an identity
mapping. Therefore, when the subgroup H acts
on Xr,n , only the identity in H has fixed points.
Moreover, if g is the identity mapping, then for
any a ∈ Xr,n , a is a fixed point of g. Thus, the
total number of fixed points of
the identity mapping are . By Lemma 2.1,

the number of equivalence classes are g

|Fix(g)| = .
Next, we use some special subgroups H acts on
Xr,n.
1. When Ir acts on Xr,n (n ≥ r), since |Ir | = 1,
there are equivalence classes.
2. When Cr acts on Xr,n (n ≥ r), since |Cr | = r,
there are equivalence classes.
3. When D2r acts on Xr,n (n ≥ r ≥ 3), since |D2r
| = 2r, there are equivalence classes.
4. When Sr (n ≥ r) acts on Xr,n , since |Sr | = r!,
there are equivalence classes.
5. When Ar acts on Xr,n (n ≥ r ≥ 3), since |Ar | =

equivalence classes.
6. When C

′

k ∗ C
′

r −k acts on Xr,n (n ≥ r > k),
since |C

′

k∗ C
′

r−k | = k(r−k),there are
equivalence
classes.
7. When D2k ∗ D2r−2k acts on Xr,n (n ≥ r > k
≥ 3), since |D2k ∗ D2r−2k| = 4k(r − k), there
are

equivalence classes.
8. When A

′

k ∗ A
′

r−k acts on Xr,n (n ≥ r > k ≥ 3,
r − k ≥ 3), since |A

′

k ∗ A
′

r−k| = , there
are equivalence classes.
9. When Ck ∗ D2r−2k acts on Xr,n (n ≥ r > k ≥
3, r − k ≥ 3), since |Ck ∗ D2r−2k| = 2k(r −

k),there are equivalence classes.
10. When S

′

k ∗ S
′

r−k acts on Xr,n (n ≥ r > k),
since |S

′

k ∗ S
′

r −k | = k!(r − k)!, there are

equivalence classes.
Example 3.1. If r = 7, k = 3 and n = 8, then we
have that
1. When I7 acts on F7 ,8 , there are =
40320 equivalence classes.
2. When C7 acts on F7 ,8 , there are =
5760 equivalence classes.
3. When D14 acts on F7 ,8 , there are
= 2880 equivalence classes.
4. When S7 acts on F7 ,8 , there are = 8
equivalence classes.
5. When A7 acts on F7 ,8 , there are =
16 equivalence classes.
6. When C acts on F7 ,8 , there are

= 3360 equivalence classes.
7. When D acts on F7 ,8 , there are

= 840 equivalence classes.
8. When A acts on F7 ,8 , there are

= 1120 equivalence classes.
9. When C acts on F7 ,8 , there are

= 1680 equivalence classes.
10. When S acts on F7 ,8 , there are

= 280 equivalence classes.

3.2 The Set of all Mappings from X to Y
In this subsection, we discuss Fr,n. When the
subgroup H acts on Fr,n , for any r-cyclic
permutation πr in Sr , if a∈ Fr,n is a fixed point
of πr , then
a(x1 ) = a(πr (x1 )) = a(x2 ) = a(πr (x2 )) = ... =
a(xr ) = a(πr (xr )).
Conversely, if the conditions above hold, it is
easy to check that a is a fixed point of πr . Thus,
|Fix(πr )| = n.
Moreover, for any g = πs1 ∗ πs2 ∈ Sr , where
πs1 is an s1-cyclic permutation and πs2 is an s2-
cyclic permutation. If a ∈ Fr,n is a fixed point
of g, then
a(x1 ) = a(πs1 (x1 )) = a(x2 ) = a(πs1 (x2 )) = ...
= a(xs1 ) = a(πs1 (xs1 )),
a(xs1 +1 ) = a(πs2 (xs1 +1 )) = a(xs1 +2 ) =
a(πs2 (xs1 +2 )) = ... = a(xs1 +s2 ) = a(πs2 (xs1
+s2 )).
Conversely, if the conditions above hold, it is′ ′ ′ ′

′ ′ ′ ′
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easy to check that a is a fixed point of πr . Thus,
|Fix(πs1 ∗ πs2 )| = n2 .
Generally, for any g ∈ H such that g has the
form of 1d1 2d2 ...rdr , we have that

In conclusion, by Lemma 2.1, when the
subgroup H acts on Fr,n , the number of
equivalence classes is

Next, we use some special subgroups H acts on
Fr,n.

1. When Ir acts on Fr,n , there are nr equivalence
classes and each contains one element.
2. When Cr acts on Fr,n , there are

equivalence classes.
3. When D2r acts on Fr,n (r ≥ 3), we consider
the following two cases:
• Ifr is an odd number, then there are

equivalence classes.
• Ifr is an even number, then there are

equivalence classes. 4.
When Sr acts on Fr,n , there are

equivalence classes. For convenience, we denote

5. When Ar acts on Fr,n , where r ≥ 3, for any g
∈ Ar , r − (d1 + d2 + ... + dr ) is an even integer.
We consider the following two cases:

• Ifr is an odd integer, then d1 + d2 + ... + dr is
an odd integer. Thus, Ar has all elements g in Sr
that g has the form of 1d1 2d2 . . . rdr , where d1
+ d2 + ... + dr is an odd integer. By Lemma 2.1,
the number of equivalence classes are

• Ifr is an even integer, then d1 +d2 + ... +dr is
an even integer. Thus, Ar has all elements g in
Sr that g has the form of 1d1 2d2 . . . rdr , where
d1 + d2 + ... + dr is an even integer. By Lemma
2.1, the number of equivalence classes are

g ni 1 di = d1 +2d2 ..+rdr =r

ni 1 di = (trnr +tr−2nr−2
+ ... +t1 n2 ).
6. When Ck ∗ Cr−k acts on Fr,n , since Ck is
isomorphic to Ck and Cr−k is isomorphic to
Cr−k , Ck acts
on Fr,n is equivalent to Ck acts on Fk,n and
C

′

r−k acts on Fr,n is equivalent to Cr−k acts on
Fr−k,n ,
respectively. Thus, there are

equivalence classes.
7. When D

′

2k ∗ D
′

2r−2k acts on Fr,n , where k
≥ 3 and r − k ≥ 3, since D

′

2k is isomorphic to
D2k and
′ ′ ′
D2r−2k is isomorphic to D2r−2k , D2k acts on
Fr,n is equivalent to D2k acts on Fk,n and
D2r−2k acts on Fr,n is equivalent to D2r−2k acts
on Fr−k,n, respectively. Thus, there are a total of
4 cases because k and r − k can either be odd or
even.
• If 2 ∤ k and 2 ∤ r − k, then the number of
equivalence classes are

• If 2 ∤ k and 2 | r − k, then the number of equivalence classes are

′ ′ ′ ′ ′
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• If 2 | k and 2 ∤ r − k, then the number of equivalence classes are

• If 2 | k and 2 | r − k, then the number of equivalence classes are

8. When C
′

k ∗ D
′

2 r−2k acts on Fr,n , where
r−k ≥ 3,since C

′

k is isomorphic to Ck and
D

′

2r−2k is isomorphic
to D2r−2k, similarly, there are 2 cases
depending on parity of r − k.•

Ifr is an odd number, then there are

equivalence classes.
• Ifr is an even number, then there are

equivalence classes.
9. When Ak ∗ Ar−k acts on Fr,n , where k ≥
3 and r − k ≥ 3, since Ak is isomorphic to Ak
and Ar−k
is isomorphic to Ar−k , A

′

k acts on Fr,n is
equivalent to Ak acts on Fk,n and A

′

r−k acts
on Fr,n is
equivalent to Ar−k acts on Fr−k,n,
respectively. Thus, there are also 4 cases.
• If 2 ∤ k and 2 ∤ r − k, then the number of
equivalence classes are

(tk nk + tk−2nk−2 + ... + t1
n)(tr−knr−k + tr−k−2nr−k−2 + ... + t1 n).
• If 2 ∤ k and 2 | r − k, then the number of
equivalence classes are

(tk nk + tk−2nk−2 + ... + t1
n)(tr−knr−k + tr−k−2nr−k−2 + ... + t2 n2 ).
• If 2 | k and 2 ∤ r − k, then the number of
equivalence classes are

(tk nk + tk−2nk−2 + ... + t2 n2
)(tr−knr−k + tr−k−2nr−k−2 + ... + t1 n).
• If 2 | k and 2 | r − k, then the number of
equivalence classes are

(tk nk + tk−2nk−2 + ... + t2 n2
)(tr−knr−k + tr−k−2nr−k−2 + ... + t2 n2 ).
10. When Sk ∗ Sr−k acts on Fr,n , since Sk is
isomorphic to Sk and Sr−k is isomorphic to

Sr−k , Sk acts
on Fr,n is equivalent to Sk acts on Fk,n and
S

′

r−k acts on Fr,n is equivalent to Sr−k acts on
Fr−k,n ,
respectively. Therefore, there are

(tk nk + tk−1nk−1 + ... + t1
n)(tr−knr−k + tr−k−1nr−k−1 + ... + t1 n)
equivalence classes.
Example 3.2. If r = 7, k = 3 and n = 8, then we
have that
1. When I7 acts on F7 ,8 , there are 87 =
2097152 equivalence classes.
2. When C7 acts on F7 ,8 , there are

× (φ(1) ×

equivalence classes.
3. When D14 acts on F7 ,8 , there are

× (φ(1) ×
equivalence classes
4. When S7 acts on F7 ,8 , there are

equivalence classes.
5. When A7 acts on F7 ,8 , there are

× (1 × 87 + 175 × 85 + 1624 × 83 + 720 ×
81 ) = 3440
equivalence classes.

′ ′ ′ ′

′ ′ ′ ′ ′
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6. When C3 ∗ C4 acts on F7 ,8 , there are

× (φ(1) ×
= × (1 × 83 + 2 × 8) × (1 × 84 + 1 × 82

+ 2 × 8)

=183744
equivalence classes.

7. When D6
∗

′
D8 acts on F7 ,8 , there are

× (φ(1) × + φ(3) × + 3 × 8

× (φ(1) ×

= × (1 × 83 + 2 × 81 + 3 × 82 ) × (1 × 84 + 1 × 82 + 2 × 8 + 2 × 83 + 2 ×
82 )
=79920

equivalence classes.

8. When C
′

3 * D
′

8 acts on F7 ,8 , there are × (φ(1) ×

= × (1 × 83 + 2 × 8)
× (1 × 84 + 1 × 82 + 2 × 8 + 2 × 83 + 2 × 82 )
=177216
equivalence classes.
9. When A3 * A4 acts on F7 ,8 , there are

× (1 × 83 + 2 × 8) × (1 × 84 + 11 × 82 )
= 70400
equivalence classes.
10. When S3 * S4 acts on F7 ,8 , there are

× (1 × 83 + 3 × 82 + 2 × 8) × (1 × 84 +

6 × 83 + 11 × 82 + 6 × 81 ) = × =
39600
equivalence classes.
Example 3.3. If r = 8, k = 3 and n = 3, then we
have that
1. When I8 acts on F8 ,3 , there are 38 = 6561
equivalence classes.
2. When C8 acts on F8 ,3 , there are

× (φ(1) ×

equivalence classes.
3. When D16 acts on F8 ,3 , there are

× (φ(1) ×

= × (1 × 38 + 1 × 34 + 2 × 32 + 4 × 31
+ 4 × 35 + 4 × 34 )
=498
equivalence classes.

4. When S8 acts on F8 ,3 , there are

= 45
equivalence classes.
5. When A8 acts on F8 ,3 , there are

× (1 × 38 + 322 × 36 + 6769 × 34 + 13068 ×
32 ) = 45
equivalence classes.
6. When C

′

3 * C
′

5 acts on F8 ,3 , there are

× (φ(1) ×

equivalence classes.
7. When D

′

6
∗ D′10 acts on F8 ,3 , there are

′ ′

′

8! × (3 − 1)!
(3 + 8 − 1)!

′ ′

′ ′
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=390
equivalence classes.

8. When C3 ∗ D10 acts on F8 ,3 , there are

=429
equivalence classes.
9. When A3 ∗ A5 acts on F8 ,3 , there are

equivalence classes.
10. When S3 ∗ S5 acts on F8 ,3 , there are

equivalence classes.

3.3 The Set of Some Special Mappings from
X to Y
We can think of a special kind of mappings
from X to Y with m1 y1 s, m2 y2 s,. . . , mn

yns, so that mi = r ,
mi ∈ N, i = 1, 2, ...,n and r ≥ n. The set of
such permutations is Zm 1 ,...,mn . We can see
that Zm 1 ,...,mn has

elements. In this subsection, we discuss the
case of the subgroup H of Sr acts on Zm 1
,...,mn . For any g ∈ H such that g has the
form of 1d1 2d2 . . . rdr in Sr . We denote cij
as the number of i-cyclic permutation for yj , i
= 1, 2, ...,r and j = 1, 2, ...,n. If a is a fixed
point if g, then the following Diophantine
equation

'

'

has an integer solution. Conversely, it is easy
to check that if the equation above has an
integer solution, then g has a fixed point and
every solution means

fixed points of g. If this equation does not have
an integer solution, g does not have a fixed
point. According to Lemma 2.1, when the
subgroup H of Sr acts on Zm 1 ,...,mn , the
number of equivalence classes is

Next, we use some special subgroups H acts
on Zm 1 ,...,mn .
1. When Ir acts on Zm 1 ,...,mn there are

··· equivalence classes and
each contains one element.
2. When Cr acts on Zm 1 ,...,mn , for any d|r ,
Cr has φ(d) elements of the form

If mi |r , i = 1, 2,...,n, then the Diophantine
equation above has a unique integer solution
and g has

fixed points. Otherwise, g has no fixed points.
Thus, by Lemma 2.1, we obtain the number of
equivalence classes.
3. When D2r acts on Zm 1 ,...,mn , for any d|r ,

12 in Cr . The case of the form

the corresponding
Diophantine equation is

If the Diophantine equation above has an
integer solution, then g has

fixed points. Otherwise, g has no fixed points.

′ ′

′ ′

′ ′
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Thus, by Lemma 2.1, we obtain the number of
equivalence classes.
• If r is an even integer, then there exists φ(d)
elements of the form ,

122

previously. If g has the form of 122

If the Diophantine equation above has an
integer solution, then g has

fixed points. Otherwise, g has no fixed points.
Thus, by Lemma 2.1, we obtain the number of
equivalence classes.
4. When Sr acts on Zm 1 ,...,mn , for any a ∈
Zm 1 ,...,mn , there exists m1 !m2 !...mn!
elements in Sr such that a can be a fixed point
of them. By Lemma 2.1, the number of
equivalence classes is

In other words, when Sr acts on Zm 1 ,...,mn ,
it only creates 1 equivalence class, and every
element is considered equivalent.
5. When Ar acts on Zm 1 ,...,mn , for any a ∈
Zm 1 ,...,mn , there exists m 1 !m22!...mn!
elements in Ar such that a can be a fixed point
of them. By Lemma 2.1, the number of
equivalence classes is

In other words, when Ar acts on Zm 1 ,...,mn ,
it only creates 1 equivalence class, and every
element is considered equivalent.
For any subgroup H1 in Sk and subgroup H2
in Sr−k, when an inner direct product group
H1 ∗ H2 acts on Zm 1 ,...,mn , if g1 ∈ H1
has the form 1d1 2d2 ...rdr in Sr and g2 ∈ H2
has the form 1e1 2e2 ...rer in Sr , then g1 ∗ g2
has the form of 1d1 +e1 −r2d2 +e2 ...rdr +er .
Thus, if we obtain the form of all elements in
H1 ∗ H2 , then we can solve the
corresponding Diophantine equations and
calculate the number of equivalence classes by
Lemma 2.1.

Example 3.4. If r = 8, k = 3, m1 = 3, m2 = 3,
and m3 = 2, then we have that 1. When I8 acts
on Z3 ,3 ,2 , there are

equivalence classes
2. When C8 acts on Z3 ,3 ,2 , we consider the
following 4 cases:
(a) C8 has an element of the form 18 , and this
element has = 560 fixed points. (b) C8
has an element of the form 24 , but there are
no fixed points.
(c) C8 has 2 elements of the form 42 , but
there are no fixed points.
(d) C8 has 4 elements of the form 81 , but
there are no fixed points. Thus, there are

equivalence classes.
3. When D16 acts on Z3 ,3 ,2 , we consider the
following 5 cases:

D16 has an element of the form 18 , and
this element has = 560 fixed points. (b)
D16 has 5 elements of the form 24 , but there
are no fixed points.
(c) D16 has 2 elements of the form 42 , but
there are no fixed point
(d) D16 has 4 elements of the form 81 , but
there are no fixed points.
(e) D16 has 4 elements of the form 1223 , and
each element has × = 12 fixed points.
Thus, there are

× (1 × 560 + 4 × 12) = 38
equivalence classes.
4. When S8 acts on Z3 ,3 ,2 , there is 1
equivalence classes.
5. When A8 acts on Z3 ,3 ,2 , there is 1
equivalence classes.
6. When C

′

3 * C
′

5 acts on Z3 ,3 ,2 , we
consider the following 4 cases:
(a) C

′

3 * C
′

5 has an element of the form 18 ,
and this element has = 560 fixed points.
(b) C

′

3 * C
′

5 has 4 elements of the form 1351 ,
but there are no fixed points.
(c) C

′

3 * C
′

5 has 2 elements of the form 1531 ,
and each element has × + ×
= 20
fixed points.
(d) C

′

3 * C
′

5 has 8 elements of the form 3151 ,
but there are no fixed points.

′ ′
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Thus, there are

× (1 × 560 + 2 × 20) = 40
equivalence classes.
7. When D6 * D10 acts on Z3 ,3 ,2 , we
consider the following 9 cases:
(a) D

′

6 * D′10 has an element of the form 18 ,
and this element has = 560 fixed points.
(b) D

′

6 * D′10 has 3 element of the form 1621 ,
and each element has × + ×
+ × = 140 fixed points.
(c) D

′

6 * D′10 has 2 elements of the form 1531
, and each element has × + ×

= 20
fixed points.
(d) D

′

6 * D′10 has 5 elements of the form 1422
, and each element has × + ×

+ × = 40 fixed points.
(e) D

′

6 * D′10 has 15 elements of the form
1223 , and each element has × = 12
fixed points.
(f) D

′

6 * D′10 has 10 elements of the form
112231 , and each element has × ×

+ × × = 4 fixed points.
(g) D

′

6 * D′10 has 4 elements of the form 1351
, but there are no fixed points.
(h) D

′

6 * D′10 has 12 elements of the form
112151 , but there are no fixed points.
(i) D

′

6 * D′10 has 8 elements of the form 3151 ,
but there are no fixed points.
Thus, there are

× (1 × 560 + 3 × 140 + 2 × 20 + 5 × 40 + 15
× 12 + 10 × 4) = 24
equivalence classes.
8. When C3 * D10 acts on Z3 ,3 ,2 , we
consider the following 6 cases:
(a) C

′

3 * D′10 has an element of the form 18 ,
and this element has = 560 fixed points.
(b) C

′

3 * D′10 has 2 elements of the form 1531
, and each element has × + ×

= 20
fixed points.
(c) C

′

3 * D′10 has 4 elements of the form 1351
, but there are no fixed points.

(d) C
′

3 * D′10 has 8 elements of the form 3151
, but there are no fixed points.
(e) C

′

3 * D′10 has 5 elements of the form 1422 ,
and each element has × + ×
+ × = 40 fixed points.
(f) C

′

3 * D′10 has 10 elements of the form
112231 , and each element has × ×

+ × × = 4 fixed points.
Thus, there are

× (1 × 560 + 2 × 20 + 5 × 40 + 10 × 4) = 28
equivalence classes
9. When A

′

3 * A
′

5 acts on Z3 ,3 ,2 , we
consider the following 7 cases:
(a) A

′

3 * A
′

5 has an element of the form 18 ,
and this element has = 560 fixed points.
(b) A

′

3 * A
′

5 has 22 elements of the form 1531 ,
and each element has × + ×
= 20
fixed points.
(c) A

′

3 * A
′

5 has 40 elements of the form 1232 ,
and each element has × = 2 fixed
points.
(d) A

′

3 * A
′

5 has 15 elements of the form 1422 ,
and each element has × + ×
+ × = 40 fixed points.
(e) A

′

3 * A
′

5 has 30 elements of the form
112231 , and each element has × ×

+ × × = 4 fixed points.
(f) A

′

3 * A
′

5 has 24 elements of the form 1351 ,
but there are no fixed points. (g) A

′

3 * A
′

5 has
48 elements of the form 3151 , but there are no
fixed points.
Thus, there are

× (1 × 560 + 22 × 20 + 40 × 2 + 15 × 40
+ 30 × 4) = 10
equivalence classes.
10. When S

′

3 * S
′

5 acts on Z3 ,3 ,2 , we
consider the following 15 cases:
(a) S

′

3 * S
′

5 has an element of the form 18 , and
this element has = 560 fixed points.
(b) S

′

3 *S
′

5 has 13 element of the form 1621 ,
and each element has × + ×

′ ′

′ ′
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+ × = 140 fixed points.
(c) S

′

3 * S
′

5 has 22 elements of the form 1531 ,
and each element has × + ×
= 20
fixed points.
(d) S

′

3 * S
′

5 has 45 elements of the form 1422 ,
and each element has × + ×
+ × = 40 fixed points.
(e) S

′

3 * S
′

5 has 100 elements of the form
132131 , and each element has × ×

+ × × + × ×
+ × × = 8 fixed points.
(f) S

′

3 * S
′

5 has 40 elements of the form 1232 ,
and each element has × = 2 fixed
points. (g) S

′

3 * S
′

5 has 45 elements of the form
1223 , and each element has × = 12
fixed points.
(h) S

′

3 * S
′

5 has 90 elements of the form
112231 , and each element has × ×

+ × × = 4 fixed points.
(i) S

′

3 * S
′

5 has 30 elements of the form 1441 ,
but there are no fixed points.
(j) §3, * §5, has 90 elements of the form
122141 , but there are no fixed points. (k) §3,
* §5, has 60 elements of the form 113141 , but
there are no fixed points.
(l) §3, * §5, has 40 elements of the form 2132 ,
and each element has × = 2 fixed
points.
(m) §3, * §5, has 24 elements of the form 1351
, but there are no fixed points. (n) §3, * §5, has
72 elements of the form 112151 , but there are
no fixed points. (o) §3, * §5, has 48 elements
of the form 3151 , but there are no fixed points.
Thus, there are

× (1 × 560 + 13 × 140 + 22 × 20 + 45 ×
40 + 100 × 8 + 40 × 2 + 45 × 12 + 90 × 4 + 40
× 2) = 9
equivalence classes.

4. Applications
In this section, we give some application of
this topic. For example,
1. How many ways are there to arrange 9
people in a circle? In this case it’s C9 acting
on 儿9 ,9 . We need to calculate the number of

equivalence classes when C9 acts on 9 ,9 .
There are

equivalence classes, thus there are 40320 ways
to arrange 9 people in a circle.
2. How many necklaces can be made from 3
red beads, 3 yellow beads, and 3 green beads?
In this case it’s C9 acting on 33 ,3 ,3 . We
need to calculate the number of equivalence
classes when C9 acts on 33 ,3 ,3 . We consider
the following 3 cases:
(a) C9 has an element of the form 19 , and this
element has = 1680 fixed points. (b) C9
has 2 elements of the form 33 , and each
element has = 6 fixed points.
(c) C9 has 6 elements of the form 91 , but
there are no fixed points. Thus, there are

equivalence classes. In other words, there are
188 different kinds of necklaces which can be
made from
3 red beads, 3 yellow beads, and 3 green beads.
3. How many bracelets can be made from 3
red beads, 3 yellow beads, and 3 green beads?
In this case it’s D18 acting on 33 ,3 ,3 . We
need to calculate the number of equivalence
classes when D18 acts on 33 ,3 ,3 . We
consider the following 4 cases:
(a) D18 has an element of the form 19 , and
this element has = 1680 fixed points. (b)
D18 has 2 elements of the form 33 , and each
element has = 6 fixed points.
(c) D18 has 6 elements of the form 91 , but
there are no fixed points.
(d) D18 has 9 elements of the form 1124 , but
there are no fixed points. Thus, there are

× (1 × 1680 + 2 × 6) = 94
equivalence classes. In other words, there are
94 different kinds of bracelets which can be
made from
3 red beads, 3 yellow beads, and 3 green beads.
4. How many bead sequences can be made
from 3 red beads, 3 yellow beads, and 3 green
beads, and the first 4 beads and the last 5
beads are each considered as necklaces,
respectively? In this case it’s
C

′

4 × C
′

5 acting on Z3 ,3 ,3 . We need to
calculate the number of equivalence classes
when C

′

4 × C
′

5 acts
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on Z3 ,3 ,3 . We consider the following 6 cases:
(a) C

′

4 × C
′

5 has an element of the form 19 ,
and this element has = 1680 fixed points.
(b) C

′

4 × C
′

5 has 2 elements of the form 1541 ,
but there are no fixed points.
(c) C

′

4 × C
′

5 has an element of the form 1522 ,
and each element has × × 3 = 120
fixed
points.
(d) C

′

4 × C
′

5 has 4 elements of the form 1451 ,
but there are no fixed points. (e) C

′

4 × C
′

5 has 4
elements of the form 2251 , but there are no
fixed points. (f) C

′

4 × C
′

5 has 8 elements of the
form 4151 , but there are no fixed points.
Thus, there are

equivalence classes. In other words, there are
90 different kinds of necklaces which can be
made from 3 red beads, 3 yellow beads, and 3
green beads and the first 4 beads and the last 5
beads are each considered as necklaces,
respectively.
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