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Abstract: This study introduces a novel
looped-function (LF) approach for
evaluating the stability of linear switching
systems under sampled-triggered control.
The method introduced a novel stability of
system and based on the discrete-time
Lyapunov theorem, to present a
sampling-triggered for switching systems. It
greatly reduces the conservation of the
system and the method is based on the
discrete-time Lyapunov theorem. Based on
the LF, it can improve stable criteria for
switched systems with sampled control. The
combination of LF and switching system
can greatly reduce the amount of
calculation. Therefore, our theoretical
analysis is great significance and greatly
promote the stability of the control system.
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1. Introduction
Over the past several years, switching systems
have garnered increasing attention and
popularity in various fields of research and
application [1]. In our daily life, aerospace,
military science and technology have a large
number of applications. There are lots of
researchers focusing on the re- search of
switching systems . In the traditional method,
we used Lyapunov method to work out the
stability [2]. Lyapunov stability is a general
method for stability analysis, multivariate,
linear, nonlinear, time-invariant and
time-varying systems based on state space
description of the system. It not only describes
the external characteristics of the system, but
also fully reveals the internal characteristics of
the system. But the Lyapunov function must
be positive and the first derivative must be
negative. It is essentially a conservative
approach to problem-solving [3].Recently the
sampled-data system has attracted growing
interest from numerous researchers, primarily

due to its extensive applications across various
domains, such as Electronic computers,
communications, radar, television, automatic
control, telemetry and remote control, radio
navigation and measurement technology [4].
As is well-known, the traditional Lyapunov
function is very important for stability analysis.
For the stability the Lyapunov function must
be positive and the first derivative must be
negative [5].
The LF is a novel stability analysis for system.
This paper introduce a novel method analysis
for sampled switching system. The LF can be
used widely [6-10], for the marker time system
it use be important, for example the impulsive
system , sampled- date system and it can be
used in sampled-data control of Markov jump
systems. In this paper the discrete Lyapunov
function must be positive but the first
derivative don’t have to negative. In this paper
we define W(t) = � � + � �, ⋅ and t ∈ [tk ,
tk+1) [11], and the V (t) is discrete Lyapnov
function, V(t) is called LF. W(t) must be
satisfied W (tk+1) < W (Tk ), and the looped-
function V(t, ·) must be satisfied the equation:
V > 0 and V(0, ·) = V(T, ·), it’s a LF of period
satisfied T [12]. To introduce the LF, the
monotonicity of the function is relaxed. The
application has been greatly improved of the
Lyapunov function. Switching, sampled, LF,
and when they are combined they made a
novel method for the analysis of stability. In
traditional methods for stability analysis of
switching system, to deal with those system
should be strict Lyapunov function. To
introduce the LF to deal with the sampled-date
switching system can reduce constraint [13].
Inspired from the above problem, we introduce
the LF or sampled-date switching system. The
LF must be satisfied that the sequence
� �, ⋅ > 0 and � 0, ⋅ = � ��, ⋅ , and
the function V is non-monotonically. The main
advantages for this paper as following:
(1) In section 2, first solving for the liner
system x� t we can convert the system to
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�� � � , and �� � � can visually get the state
relationship in each interval [0, Tk], where k
∈ ℕ for corresponding each subsystem. Then
some useful definition for stability analysis are
presented, and the import definition LF is
defined;
(2) In section 3, the impulsive mechanism and
controller is by given. By LF proved stability
with the mechanism and controller system;
(3) The rest of the paper provide the stability
of the system by loop-function, and give the
conclusions for this paper.
In order to simply analyze the stability of the
system, in this paper the switching system is
assumed into two cases:
(a) When the sampled occurs, but the
switching condition is not met, so it does not
switching. For this reason, we assume stability
of the subsystem sequence;
(b) When the sampled occurs and the
switching conditions are met, the system
should also be switched at this time to obtain a
new subsystem of the system, in this time the
�� � error function is zero.
Anyway, if you switch subsystems, you’re
going to go to the next subsystem, and what
happens is that the sampled is going to go to
the next sampled, and if don’t switch the
sampling and subsystem synchronization are
not switched into next sequence.
Notations: In this article, ℕ is set of
nonnegative integer numbers, ℝ+ is set of the
nonnegative scalars, ℝ is set of real number,
ℝn denote then-dimensional Euclidean space,
ℝn×n is n-dimensional matrices space. The
notation | · | is defined as an Euclidean norm. λ,
λmin, λmax are the corresponding eigenvalue,
minimum eigenvalue and maximum
eigenvalue, respectively. The superscripts “T”
and “-1” are represented as transpose and
inverse for a matrix. A matrix P, P > 0 means
the matrix is positive and symmetric.

2. Preliminaries
Consider the sampling switched linear
systems:

x� t = Aσx t + Bσu tk ,
y t = Cσx t ,
x 0 = x0.

(1)

where x(t) ∈ ℝm is the system state, x(0) = x0
is the initial value, u ∈ ℝn is the control input,
y(t) ∈ ℝp is the measurable output, {tk }k∈ℕ

satisfied t0 < t1 < t2 · · · < tn in sampling

instants. σ is the switching signal and it just
represents the number of subsystems, when the
subsystem is switching,the serial number of σ
is increased by one immediately, while it is a
piecewise constant function of right
continuous and σ : [0, ∞) → M = {1, 2, 3 · · · ,
l}, for each switching subsystem Ai , Bi , Ci and
i ∈ M are constant matrices. In this paper,
the control input is linear then u(t) = Kx(tk ).
Then the system (1) is constructed as

x� t = Aσx t + BσKσx tk ,
y t = Cσx t . (2)

For each sampling interval there is switching
with exists at least one sampling in [tk, tk+1)k∈
N . There exist two scalars 0 < η 1 < η2 such
that

�� = ��+1 − �� ∈ �1, �2 . (3)
From (2), we can get

x t = eAσ t−tk x tk
+ ∫tk

t eAσ t−s BσKσx tk ds
= eAσ t−tk x tk
+ ∫0

t−tkeAσ t−tk−θ BσKσx tk dθ.
Let τ = t − tk and τ ∈ 0, Tk then
x tk + τ = eAσ|τ|x t − τ

+ ∫0
τeAσ τ−θ BσKσx t − τ dθ,

which can define as
χk τ = eAστχk 0

+ ∫0
τeAσ τ−θ BσKσχk 0 dθ,

where the K refers to Kth subsystem, and τ ∈
[tk , tk+1]. Then the system (2) can construct as

x� t = χ�k τ = Aσχk τ + BσKσχk 0 ,
y t = Cσx t = Cσχk τ . (4)

Definition 2.1. define
|x t − x� t | < �. (5)

This inequality holds, when the system does
not satisfy the switching condition, in other
words it means that these are approximately
equal, where t ∈ [tk , tk+1), x� t denote the
system state, x(t) denote the sampled system
state and δ > 0 is a enough smaller number,
respectively.
Definition 2.2. define a function as
f: 0, Tmax × K Tmin,Tmax × Tmin, Tmax → ℝ,
(6)
where K is defined as a union set of the
continuous function, φ ≤ Tmin ≤ Tmax <
∞, φ > 0, it is called to be as a LF if those are
satisfied
(i)f 0, ⋅ = f T, ⋅ . all T ∈ [Tmin , Tmax] ;
(ii)the first variable is differentiable for the
function f.
Definition 2.3. If there exists a function V:ℝn
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→ℝ+ such that
(i)�1|�| ≤ � �, � ≤ �2|�|;
(ii)�� �, � <− �3|�|.
Where ωi|i=1,2,3 are some positive constants.
Therefore the solution of (1) is stable.
Definition 2.4. define a function W(τ, χk ) for
all (k, Tk , τ ) ∈ ℕ and

� �, �� = � �� � + � �, �� ,
then

�� �, �� = �
��

� �� � + � �, �� , (7)
where � �� � is Lyapunov function and
satisfied � �� 0 >� �� �� ,V is LF and
satisfied definition 2.2 .
Theorem 2.1. For δ ≤ Tmin ≤ Tmax < ∞ , there
exist two positive scalars 0 < δ1 < δ2 such that

�1|�|� ≤ � � ≤ �2|�|�. (8)
Then, system (1) is stable if these two
equivalent statement is satisfied:
(i) the Lyapunov function is strictly negative
for all k ∈ N with the increment of time
sequence

�� � = � �� �� − � �� 0 < 0; (9)
(ii) there exist a continuous and differentiable
looped-function V, it satisfied definition 2.2
and

V(0, ·) = V(T, ·). (10)
Proof. Assume that (ii) of theorem 2.1 is
satisfied and τ ∈ [0, Tk ], then
∫0

���� �, �� = ∫0
�� �

��
� �� � + � �, ��

= � �� 0 + � 0, �� − � �� ��
− � ��, ��

= � �� 0 − � �� ��

=− � ��+1 0 − � �� 0 . (11)
Since the decreasing of { � �� �� }, so
� ��+1 0 - � �� 0 < 0, therefore, the
proof (i) is complete.
Assume that (i) of theorem 2.1 is satisfied. and
we introduce a function
� �, ��, �� =− � �� � + �

��
�� �� �� . (12)

Obviously, it satisfied LF V(0,��, Tk) = V(Tk ,
��, Tk ) .
Then, (7) can be wrote as following

d
dτ

W τ, χ, χk−1 = d
dτ

V χk τ + V τ, χk

= V� χk τ − V� χk τ + 1
Tk

ΔV χk Tk

= 1
Tk

ΔV χk Tk (13)

From definition 2.3 and △ V χk Tk =
V χk Tk -V χk 0 < 0, so the system (1) is

stable.

Figure 1. State of response of LF
In Figure 1, the real line denotes the
continuous Lyapunov function, dashed denotes
the discrete point of W(τ, �� ) = V(�� (τ)) +
V(τ, �� ) and the V(τ, ��) is LF. In this paper
the important thing for the Lyapunov function
is that the function is non-monotonic, we just
need that it is monotonically decreasing at the
discrete points and combine with the LF V(0, ·)
= (V , ·). This method is the core theoretical
method based on the discrete-time theorem in
this article. In the Fig.1, we can clearly see that
the Lyapunov function is non-monotonic, and
we just need the sequence {tk}| k ∈ ℕ is
decreasing, and at the same time in this instant
the LF V(0, ·) = V(T, ·) = 0, so in this instant
there exist W(Tk , �� ) = � �� �� , so the
number of discrete points increases, eventually
the system will be stable.

3. Impulsive Mechanism and Controller
In this section, first we introduce the
sub-observer for impulsive switching system,
then we introduce the triggered measure
between sub-system and impulsive system.
Finally analysis the system with the LF.

3.1 Sampling Observer
First, we introduce a sub-observer system of
the impulsive system, then we analyst the
impulsive sub-observer of LF.
χ��k τ = Aσχ�k τ + BσKσχ�k 0 + Lσ yk − y�k
(14)
Where ��� � is the state of the kth sampling
sub-system. ��� is the output of sampling
system. Lσ is observer gain of the subsystem.
Let

� � = � � − �� � �� � = �� � − ��� �
then

�
��

�� �

= �
��

�� � − ��� �
= �� �� � − ��� � (15)

− ���� �� � − ��� �
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= �� − ���� �� � .
We can constructed from (14) as following
χ��k τ = Aσχ�k τ + BσKσχ�k 0

+ LσCσ χk τ − χ�χ τ (16)
= Aσχ�k τ + BσKσχ�k 0 + LσCσek τ .

Consider (16) and let �� � = ��
� � ��� �

as the quadratic Lyapunov function, the LF
d e f i n e a s � �, ��, �� =− � �� � +

�
��

�� �� ��

From definition 2.1 have χk τ and χ�k τ are
approximately equal for the system not in the
switching instant. Then we can get

�� =
1
��

�� �� ��

=
1
��

��
� �� ��� ��

− ��
� 0 ��� 0

=
1
��

��
� �� ��� ��

− ��−1
� �� ���−1 ��

=
1
��

��
� �� − ���

� �� � �� ��

− ��� ��

− ��−1
� �� − ���−1

� �� � ��−1 ��

− ���−1 ��

=
1
��

��
� �� ��� �� + ���

� �� ���� ��

− ��
� �� ���� �� − ���

� �� ��� ��
− ��−1

� �� ���−1 ��
− ���−1

� �� ����−1 ��
+ ��−1

� �� ����−1 ��
+ ���−1

� �� ���−1 ��
Since

��
� �� ��� �� − ��−1

� �� ���−1 �� < 0
then
���

� �� ���� �� − ��
� �� ���� ��

− ���
� �� ��� ��

− ���−1
� �� ����−1 ��

+ ��−1
� �� ����−1 ��

+ ���−1
� �� ���−1 �� ≤ 0.

So �� _< 0, then the sampling observer
mechanism is stable which implies that the
system (1) is stable.

3.2 Sampled-Triggered Measure and
Controller
In this sub-section, we introduce sampling
measure and it is made up of two parts:
sampling and monitoring. The monitor is

extremely important for switching system, it
determines generated or not of event. And the
condition introduce by

|��� � |2 ≥ �|��� � |2, (17)
where � � = � � − �� � �� � = �� � −
��� � and
µ > 0 is a constant threshold. The sampling
will occur
immediately. When the event occurs, the error
ek (τ) is reset to zero and instants to grow until
it happen again. In this paper we have the
assumption, ��0 = t0 = 0 at the first event is
occurred. From the above we can get
���+1 = ���{� > ���||��� � |2 ≥ �|��� � |2}, (1
8)
Where t�, t�k+1 are the stateχk 0 sampled at
time t�k and next instant.

4. Stability Analysis
In this paper switching between the two
sampling intervals at most once. Suppose that
n = 1, 2, 3 · · ·, samplings occur on the interval
[ti, ti+1), from (14) we can get
��� � �
= ����� � + ������� �� + �� ��� − ����
= ����� � + ������� �� + ������ �
= ����� � (19)
+ ���� ��� � − ��� � + ������ �
= �� + ���� ��� � − ������� �
+ ������ �
From (15) and (19), we can get
��� � � = �� + ���� ��� � − ������� � + ������ �
��� � = �� − ���� �� � (20)

and we can rewritten it as
�� � = �� �� � + �� �ê � (21)

where

� � = ��� �
�� � , �� �

= �� + ���� ����
0 �� − ����

�� � = − ���� 0
0 0 , ê � = ���� �

0
Lemma 4.1. There exist matrix R > 0, N > 0
and τ ∈ [0, Tk ], the following is satisfied
− ∫0

τχ�kT θ Rχ�k θ dθ
≤ 2Fk

T τ N χk τ − χk 0
− τFk

T τ NR−1NTFk τ
where Fk = [�� � χk 0 ]T .
Theorem 4.1. There exist P > 0, R > 0, C1 ∈
n , X ∈ n , C2 ∈ ℝn×n, and N ∈ ℝ2n×n. If
those LMIs are satisfied for all τ ∈ [0, Tk ]

�1 + �2 + �3 + �3 + �5 + �6 < 0,
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where
� = ������ ,

�1 = 1 0 �,
�2 = 0 1 �,� = �1 �2 , �12 = �1 − �2 ,

� = �� − �,
�� = �� � �� 0 � ,

�1 =− �12�1�12
� + 2��12�1��,

�2 =− 2�12�2�2 + 2����2�2,
�3 = 2��1

� − 2��2
� − ���−1�

+ ���� �� � ,
�4 = �2���2

� − 2�2��2
�,

�5 = 2�1���
Then the system (21) is asymptotically stable
for sampling system satisfying system (1).
Proof. We choose the Lyapunov function as
following:

� �, �� = � �� � + ∑1
4�� �, �� ,

where τ ∈ [0, Tk ] and let π = Tk - τ, then the
components are given by

� �� � = �� � ���� � ,
� �, �� = ∑1

4�� �, �� ,
�1 �, �� = ���

� � �1�� � ,
�2 �, �� = 2���

� � �2�� 0 ,
�3 �, �� = �∫0

��� �� � ��� � � ��,
�4 �, �� = ����

� 0 ��� 0 .
So we can get

W� τ, χk = V� χk τ + ∑1
4V� i τ, χk , (22)

where
V� 1 τ, χk = Fk

TΠ1Fk,
V� 2 τ, χk = Fk

TΠ2Fk,
V� 3 τ, χk ≤ Fk

TΠ3Fk,
V� 4 τ, χk = Fk

TΠ4Fk,
V� χk τ = Fk

TΠ5Fk.
And from lemma 4.1we can get

�� 3 �, �� ≤ ��
��3�� (23)

So W� τ, χk < 0, then the system (1) is stable.
This proof is complete.

4. Conclusion
This paper used a new LF to solve the stability
of linear switching systems with
sampled-triggered control. The method is
based on the discrete-time Lyapunov theorem.
It greatly reduces the conservation of the
system. Firstly, the system is divided into each
corresponding interval to analyze by solving
the differential equation of the system. Then
the stability of the system is analyzed by intro-
ducing the LF. Based on the LF, it can
improve criteria of the stability. The
combination of LF and switching system can

greatly reduce the amount of calculation and
improve the stability of switching system.
This work was supported by the
Undergraduate Innovation and
Entrepreneurship Training
Program(D202411142114497882).
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