
Design of the Top-Level Code Framework for Unity Based on C#
Language

Qi Zhang, Ning Mao, Jinxiu Li, Ningning Zhou, Jingyi Miao, Guwei Li *
Artificial Intelligence College, Zhejiang Dongfang Polytechnic, Wenzhou, Zhejiang, China

*Corresponding Author.

Abstract: This paper focuses on exploring
the design of a top-level code framework for
Unity based on the C# language. As a
popular game development engine, Unity is
widely used in various fields such as virtual
reality and gaming, thanks to its cross -
platform capabilities and rich resources.
The C# language, with its simplicity,
powerful functionality, and object - oriented
features, is closely integrated with Unity and
has become the key to building efficient
applications. Through in - depth analysis of
design principles, construction of core
modules, and application of real - world
cases, this paper presents a complete and
practical top - level code framework, which
provides strong support for improving the
development efficiency and quality of Unity
projects.

Keywords: Unity; C#; Framework; Code

1. Introduction
Since its launch, the Unity engine has quickly
gained prominence in the fields of game
development, virtual reality (VR), augmented
reality (AR), and other interactive applications.
Its cross - platform nature enables developers
to easily deploy projects to a variety of devices,
from desktop computers to mobile devices, and
even emerging VR headsets. As the
complexity of applications increases, efficient
code organization and architecture design
become increasingly important. The C#
language, as the main scripting language for
Unity, has a concise syntax, strong type safety,
and a rich class library, and it has significant
advantages in building robust and maintainable
code. Designing a reasonable top - level code
framework helps standardize the code structure
in Unity projects, improve development
efficiency, enhance code extensibility and
reusability, and thus promote innovation and
development in related fields. Foreign

countries are at the forefront of research on the
combination of Unity and C# in development.
Many large game companies and research
institutions have conducted in - depth research
on optimizing the C# - based Unity code
framework for high - complexity games and
professional simulation applications. In terms
of performance optimization, they use
advanced algorithms and data structures to
improve rendering efficiency and memory
management capabilities. For example, some
AAA - level games optimize resource loading
and scene switching using C# features during
development to achieve a smooth gaming
experience. In China, with the development of
the game industry and VR/AR technologies,
research on Unity development has also
deepened. Universities and enterprises focus
on combining domestic market demands to
explore framework designs suitable for
different application scenarios, such as the
implementation of interactive logic and
optimization of user experience in educational
and medical applications. However, overall,
there is still room for further improvement in
the research on a general and efficient top -
level code framework.
The main research contents of this paper
include: in - depth analysis of the
characteristics and advantages of the C#
language in the Unity development
environment, clarification of the design
principles and key points of the top - level
code framework suitable for Unity projects;
construction of a complete C# - based top -
level code framework for Unity, covering the
design and implementation of core modules;
verification of the framework's effectiveness
through real - world cases, summarization of
experience, and proposal of improvement
directions. In terms of research methods, the
literature review method is used to sort out
relevant research results at home and abroad;
the case analysis method is used to analyze the

Industry Science and Engineering Vol. 2 No. 1, 2025

49



code architectures of successful Unity projects;
and combined with theoretical derivation, a
scientific and reasonable framework system is
constructed from the perspectives of software
engineering and programming language
characteristics.

2. Basics of C# Language and Unity
Development

2.1 Advantages of C# Language Features in
Unity
The C# language was developed by Microsoft.
Its concise syntax reduces the difficulty of
code writing. In Unity development,
developers can quickly get started with writing
various scripts. For example, when defining
variables and methods, the syntax is clear and
intuitive, reducing redundant code. Type safety
ensures that type errors are detected during
compilation and runtime, improving code
stability [1]. Especially in complex game logic
and data interaction, it effectively avoids
program crashes caused by type mismatches.
C# fully supports object - oriented
programming. The encapsulation feature
encapsulates data and operations in classes.
For example, a game character class contains
data such as health points and attack power, as
well as methods such as attack and movement,
enhancing code security and maintainability.
The inheritance mechanism allows sub -
classes to reuse the attributes and methods of
the parent class. For example, different types
of enemies can inherit from a general enemy
class, reducing duplicate code. Polymorphism
enables objects of different classes to respond
differently to the same message. For example,
the attack methods of different weapon classes
achieve different attack effects, enriching the
gameplay. In addition, C#'s powerful class
library covers file operations, network
communication, graphics processing, etc. In
Unity projects, functions such as resource
loading, online battles, and interface drawing
can be easily implemented, greatly improving
development efficiency [2].

2.2 Overview of the Unity Engine and Its
Development Modes
The Unity engine provides a visual
development environment, including tools
such as the scene editor and resource manager,
which facilitate developers to create and

manage game scenes, characters, and other
resources. It supports multiple development
modes, such as the component - based
development mode. A game object is
composed of multiple components, and each
component is responsible for a specific
function. For example, the Transform
component controls position, rotation, and
scaling, and the Rigidbody component
implements physical simulation. This mode
makes the code modular, facilitating reuse and
maintenance. Unity also has powerful cross -
platform capabilities. Developers only need to
write the code once and can deploy it to
different platforms, such as Windows, Mac,
iOS, Android, and VR devices, through simple
settings, saving development time and costs. In
terms of rendering, Unity uses an advanced
rendering pipeline and supports real - time
rendering of high - quality 3D scenes,
providing users with a realistic visual
experience. At the same time, Unity has a large
asset store, where developers can obtain
various pre - made resources and plugins to
further accelerate the development process.

2.3 Collaborative Working Mechanism of
C# and Unity
In Unity, C# scripts are the core for controlling
game logic [3]. Developers write C# scripts
and attach them to game objects to control the
behavior of game objects. For example, a C#
script can be written to control the movement
of a character, obtain user input (such as
keyboard and joystick operations), and modify
the properties of the character's Transform
component to achieve the character's
movement in the scene. C# scripts are closely
integrated with Unity's component system and
can access and operate the properties and
methods of components. At the same time,
Unity provides a rich set of API interfaces, and
C# scripts can call these interfaces to
implement various functions, such as loading
scenes, playing sound effects, and creating
special effects [4]. In terms of resource
management, C# code can load resources such
as models, textures, and audio from project
resources through Unity's resource loading
mechanism and dynamically instantiate and
manage them at runtime. In addition, Unity's
event system collaborates with C#'s delegate
and event mechanisms to handle various
events in the game, such as collision detection

Industry Science and Engineering Vol. 2 No. 1, 2025

50



and UI interaction, making the game logic
more flexible and efficient.

3. Design Principles of the Unity Top - Level
Code Framework

3.1 Maintainability Principle
The framework structure should be clear and
well - defined, with different functional
modules clearly divided. For example,
functions such as game logic, user interface,
and data management should be placed in
different modules [5]. The code within each
module should follow a unified coding
standard and have good comments, making it
easy for developers to understand and modify.
Design patterns, such as the singleton pattern
for managing global data and the factory
pattern for creating objects, should be used to
make the code structure more reasonable and
reduce the maintenance difficulty. At the same
time, the coupling degree between modules
should be reduced so that when the function of
one module is updated or modified, it will not
affect the normal operation of other modules as
much as possible.

3.2 Extensibility Principle
Considering the changing project requirements
and function upgrades, the framework should
reserve extension interfaces and space. For
example, in the game character system, if new
character types may be added in the future, the
character base class should be designed to be
extensible, and new character classes can
inherit from the base class and add unique
functions [6]. A plug - in architecture should
be adopted to facilitate the integration of new
functional modules later, such as adding new
game play modules or third - party service
plugins, without the need for large - scale
modification of the existing code structure.

3.3 Performance Optimization Principle
In Unity development, performance is crucial.
The framework should use efficient data
structures and algorithms to reduce memory
usage and computational overhead. For
example, the object pool technology should be
used to manage objects that are frequently
created and destroyed, such as bullets and
monsters in the game, to avoid repeated
memory allocation and deallocation. The
rendering code should be optimized, the

rendering levels of objects should be set
reasonably, and the occlusion culling
technology should be used to reduce
unnecessary rendering. For complex
calculations, asynchronous processing should
be adopted to avoid main - thread freezes and
ensure smooth game operation.

3.4 Compatibility Principle
Since Unity supports multiple platforms, the
framework design must ensure stable operation
on different platforms. When writing code, the
principle of platform independence should be
followed, and specific platform APIs should be
avoided unless necessary. For differences in
platform characteristics, such as input devices
and display resolutions, the framework should
provide a unified interface for adaptation. In
terms of resource management, it should be
ensured that resources are correctly loaded and
displayed on different platforms to guarantee a
consistent gaming experience across all
platforms.

4. Design of Core Modules of the C# - Based
Unity Top - Level Code Framework

4.1 Scene Management Module
This module is responsible for loading,
unloading, and switching game scenes. Using
Unity's SceneManager class, asynchronous
scene loading is implemented through C#
scripts to avoid game freezes during the
loading process [7]. At the same time, it
manages the generation and destruction of
objects in the scene and maintains the state of
scene objects. A SceneObjectManager class is
created to uniformly manage the lifecycle of
objects in the scene. For example, when the
scene is switched, objects that are no longer
needed in the current scene are automatically
destroyed to release memory resources.

4.2 Character Control Module
This module implements functions such as the
movement, animation playback, and state
management of game characters. By detecting
user input (such as keyboard, joystick, and
touch operations), the movement of the
character is controlled [8]. Combining the
Animator component with C# scripts, the
character's animation switching is realized.
According to the character's state (such as
walking, running, jumping, and attacking), the

Industry Science and Engineering Vol. 2 No. 1, 2025

51



parameters of the Animator are controlled
through C# code to play the corresponding
animations. At the same time, it manages the
character's attributes, such as health points and
magic points. When the character is attacked
or uses a skill, the attribute values are updated,
and other relevant modules are notified
through the event system.

4.3 Interaction Logic Module
This module handles the interaction between
the user and the game world, including UI
interaction and physical interaction. In terms of
UI interaction, using Unity's UGUI system,
responses to operations such as button clicks,
swipes, and drag - and - drops are implemented
through C# scripts. In physical interaction,
object collisions and trigger events are
detected, and the corresponding logic is
implemented through C# code [9]. For
example, when the character collides with an
item, the item pickup logic is triggered, and the
character's item inventory data is updated. For
complex interactions, such as gesture
recognition in VR interaction, third - party
libraries (such as the Leap Motion SDK) can
be integrated, and the library interfaces can be
connected through C# code to implement
gesture control functions.

4.4 Data Management Module
This module is responsible for the storage,
reading, and updating of game data. For static
data, such as game configurations and initial
character attributes, it can be stored in files in
formats such as XML and JSON, and the data
is read through C#'s file reading classes. For
example, JSON files can be used to store game
level information, which is read through code.
For dynamic data, such as the player's game
progress and scores, a database can be used for
storage. In Unity, a lightweight database such
as SQLite can be selected, and data reading
and writing are implemented through C#'s
database operation classes (such as System.
Data. SQLite). At the same time, data
consistency and synchronization between
different modules should be ensured. The
event mechanism is used to notify relevant
modules of data updates. For example, after
the player completes a task, the task data is
updated, and the UI module is notified to
display the new task status.

5. Framework Implementation and
Optimization

5.1 Inter - Module Communication
Mechanism
To achieve effective communication between
modules, an event - driven and message -
passing mechanism is adopted. In C#, through
the definition of delegates and events, loosely
coupled communication between modules is
realized. For example, after the scene
management module finishes loading a scene,
it triggers an event. The character control
module and the interaction logic module can
subscribe to this event and perform
corresponding operations when the event is
triggered, such as initializing the character and
loading UI elements. At the same time, a
message center class is created to manage and
distribute various messages. Each module
sends messages to the message center, and the
message center distributes the messages to the
interested modules. For example, when the
character control module sends a character
death message, the message center notifies the
data management module to record the game
result and the UI module to display the game
over interface.

5.2 Code Optimization Techniques
During the C# code writing process, a series of
optimization techniques are adopted to
improve performance. Complex calculations
should be avoided in high - frequency call
functions such as Update. Data that can be
cached should be calculated and cached in
advance [10]. For example, when calculating
the character's movement direction, if the
direction remains unchanged, the calculation
result can be cached to reduce repeated
calculations. Boxing and unboxing operations
should be reduced. When handling conversions
between value types and reference types, type
compatibility should be noted to avoid
unnecessary boxing and unboxing overhead.
Generics should be used to improve code
reusability and performance. For example, a
general object pool class can be created for
managing objects of different types. At the
same time, Unity's Profiler tool should be used
regularly to analyze code performance,
identify performance bottlenecks, and optimize
them accordingly.

Industry Science and Engineering Vol. 2 No. 1, 2025

52



5.3 Resource Management Strategy
In Unity projects, resource management has a
significant impact on performance. Resource
packaging and compression techniques are
adopted to reduce the size of resource files and
speed up the loading process. Unity's
AssetBundle function is used to package
resources into AssetBundle files, which are
loaded on demand at runtime. For texture
resources, the compression format and
resolution should be set reasonably to reduce
memory usage while ensuring the visual effect.
At the same time, a resource caching
mechanism should be established. Frequently
used resources, such as common UI icons and
sound effects, should be cached in memory to
avoid repeated loading. After the resources are
loaded, resources that are no longer used
should be released in a timely manner.
Through methods such as resource reference
counting, effective memory resource recovery
is ensured.

6. Detailed Design Case of the Framework

6.1 Project Background and Objectives
This case is a virtual reality adventure game
developed based on Unity. The game is set on
a mysterious island. The player controls a
character to explore the island, solve puzzles,
fight monsters, and complete various tasks.
The project objective is to create an immersive
VR gaming experience with smooth
performance, rich interactions, and an
engaging storyline.

6.2 Framework Application Process
6.2.1 Scene building and management
Using the scene management module of the
framework, multiple island scenes, including
forests, caves, and beaches, are created
according to the game design. Asynchronous
loading technology is used to ensure smooth
scene switching. Various objects, such as trees,
rocks, and buildings, are arranged in the scene.
The SceneObjectManager class is used to
manage the generation and destruction of
objects. For example, after the player leaves an
area, objects that are no longer needed in that
area are automatically destroyed to optimize
memory usage.
6.2.2 Character control and interaction
The character control module is used to
implement actions such as the movement,

jumping, and climbing of the player character
in the VR environment. Combined with the
input of VR devices such as the HTC Vive, the
character's behavior is precisely controlled.
Through the interaction logic module,
interaction with objects in the scene, such as
picking up items, opening doors, and solving
puzzles, is realized. Gesture recognition
technology (integrating the Leap Motion SDK)
is used to allow the player to operate objects
through gestures, enhancing the realism of the
interaction.
6.2.3 Data management and storyline
progression
With the help of the data management module,
data such as the player's game progress,
collected items, and completed tasks are stored.
The SQLite database is used to record the data,
and the player can continue the game when
logging in next time. According to the
storyline design, the game state is updated
through the data management module, and
different storyline events are triggered. For
example, after the player completes a specific
task, a new scene and storyline are unlocked.

6.3 Project Results and Problem Solving
By applying the C# - based Unity top - level
code framework, a virtual reality adventure
game was successfully developed. During the
testing process, the game showed good fluency
and interaction experience and received
positive feedback from players. However,
some problems were also encountered during
the development process. For example, in
complex scenes, rendering freezes occurred.
After analysis, it was found that the problems
were related to lighting calculations and object
rendering order. By optimizing the lighting
settings, using baked lighting to reduce real -
time lighting calculations, and adjusting the
object rendering levels, the freeze problem was
solved. In addition, in the development of the
online multiplayer function, data
synchronization problems were encountered.
By improving the synchronization mechanism
of the data management module and using a
reliable network communication protocol
(such as UDP), data consistency among
players in the online game was ensured, and a
stable online experience was achieved. By
solving these problems, the practicality and
extensibility of the framework were verified,
and experience was accumulated for

Industry Science and Engineering Vol. 2 No. 1, 2025

53



subsequent projects.

7. Conclusion
This paper successfully designed and
implemented a C# - based top - level code
framework for Unity. Through in - depth
analysis of the characteristics of the C#
language and the development requirements of
Unity, the design principles of the framework
were established, and a framework system
covering core modules such as scene
management, character control, interaction
logic, and data management was constructed.
Through real - world case verification, this
framework effectively improves the
development efficiency of Unity projects,
enhances code maintainability, extensibility,
and performance. In the case development,
problems such as rendering freezes and
network data synchronization were
successfully solved, proving the effectiveness
of the framework in dealing with complex
project challenges. As the Unity engine
continues to be upgraded and new technologies
emerge, the C# - based Unity top - level code
framework has broad development prospects.
At the technical level, with the improvement of
hardware performance, the framework can be
further optimized to support more complex
scenes and special effects, such as real - time
global lighting and high - resolution texture
processing. In the application field, with the
popularization of VR/AR technologies, the
framework can be extended to more industry
applications, such as medical training and
industrial design simulation, and the
interaction logic and data management can be
optimized according to the needs of different
industries. At the same time, by combining
with artificial intelligence technologies, such
as introducing AI algorithms in character
behavior control and scene generation, the
intelligence and innovation of the game can be
improved. In addition, continuous attention

should be paid to cross - platform
compatibility to ensure the stable operation of
the framework on emerging devices and
platforms, providing developers with more
powerful and flexible development tools.

References
[1] Ke Wang. Leveraging Unity for 2D Pixel

Game Development: Techniques and Best
Practices. ITM Web of Conferences, 2025,
70(1):3002-3002.

[2] Peter Snow. Virtual reality and pain
management: The need for clarity for
future interventions. British Journal of
Pain, 2025, 19(2):68-70.

[3] Škola Filip, Boskovic Dusanka, Rizvic
Selma, et al. Assessing User Experience
and Cognitive Workload in Virtual Reality
Digital Storytelling. International Journal
of Human–Computer Interaction, 2024,
40(6):1479-1486.

[4] W. Fang, F. Zhang, Y. Ding, et al. A new
sequential image prediction method based
on lstm and dcgan. Computers, Materials
& Continua, 2020, 64(1):217-231.

[5] Smith. Game architecture patterns in Unity.
Journal of Game Development, 2021,
15(2):45-67.

[6] Y. Dai, Z. Luo. Review of unsupervised
person re-identification. Journal of New
Media, 2021, 3(4):132-133.

[7] H. Wang, L. Chen, A comparative study of
game development frameworks. Computer
Games Technology Review, 2021,
8(3):22-25.

[8] Nakamura. Advanced C# techniques for
Unity developers. Game Programming
Gems, 2020, 9(1):77-79.

[9] Johnson. Memory management in Unity:
Best practices. Game Developer Magazine,
2021, 45(6):30-35.

[10]Ericson. Real-time game networking
architectures. Proceedings of GDC, 2019,
3(2):1-5.

Industry Science and Engineering Vol. 2 No. 1, 2025

54




