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Abstract: As data storage across multiple
devices becomes more complex, there is a
growing need for efficient and secure ways to
train models on decentralized personal data.
Traditional centralized training methods,
which require aggregating data from various
sources, can compromise user privacy and
data security. This report compares two
federated learning algorithms: the
widely-used FedAvg and the more recent
pFedMe. FedAvg trains a global model by
aggregating local updates from multiple
clients. pFedMe improves on FedAvg by using
Moreau envelopes for better personalized
model training. Experiments with the MNIST
dataset show that pFedMe outperforms
FedAvg in accuracy and convergence speed.
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1. Introduction

1.1 Federated Learning
Federated Learning (FL) is a machine learning
technique that enables collaborative model
training across distributed devices while
preserving user privacy. In FL, models are
trained locally on each device, and only the
model updates are aggregated by a central server,
rather than sending raw data. This approach is
particularly useful in scenarios where users
interact in a distributed and decentralized
manner with their devices, generating a vast
amount of user-generated data. FL allows this
data to be used for training machine learning
models without the need for central data
collection or storage, thereby protecting user
privacy.
However, FL algorithms face several challenges
due to non-IID (non-identically and
independently distributed), unbalanced,
massively distributed, and limited

communication data[1]. One significant
challenge is the statistical diversity of users,
where data samples collected from different
clients or devices are not statistically
independent and have different distributions.
This means that the data on each client is not a
random sample from the same underlying
distribution, leading to poor generalization of the
global model on each client's data. Studies[2][3]
have shown that the generalization errors of the
global model on clients' local data increase
significantly as statistical diversity increases,
resulting in data heterogeneity and poor model
performance on individual tasks.
To address these challenges, various methods
have been proposed, including Heterogeneous
Federated Learning via Model Distillation[2],
Adaptive Personalized Federated Learning[3],
and FL with Local and Global
Representations[4]. Personalized FL plays a
crucial role in enabling more personalized and
responsive experiences for individual users by
allowing the training of personalized machine
learning models without compromising privacy.
These personalized models can be used to
provide personalized recommendations,
predictions, and other services based on users'
unique preferences, behaviors, and interactions.
This report refers to a paper introducing a
personalized federated learning method using
Moreau envelopes[5]. This method facilitates the
separation of personalized model optimization
from overall model learning in a two-level
problem designed for personalized federated
learning. Theoretically, this approach has been
shown to achieve advanced convergence rates
and local accuracy compared to traditional
methods like FedAvg[1] and Per-FedAvg[6],
with empirical experiments demonstrating
improved performance over other federated
learning and meta-learning-based approaches.

1.2 Motivation
Federated Learning is a machine learning
technique for collaborative model training
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among distributed devices while preserving user
privacy. However, applying federated learning
faces several challenges, such as statistical
diversity of users, data heterogeneity, and
limited communication data. The statistical
diversity of users refers to the situation where
data samples collected from different clients or
devices are not statistically independent and
have different distributions, making it difficult to
generalize the model. To tackle this difficulty,
various techniques have been suggested,
including Heterogeneous Federated Learning via
Model Distillation, Adaptive Personalized
Federated Learning, and FL with Local and
Global Representations. Personalized FL can
play a crucial role in enabling more personalized
and responsive experiences for individual users.
Thus, this report is based on a paper that
proposes a personalized federated learning
method using Moreau envelopes and simulates
the scenario to solve the problem of statistical
diversity. The algorithm pFedMe in the paper
has been shown to achieve relatively advanced
convergence rates and local accuracy compared
to other methods.

1.3 Contribution
Introduce machine learning, convolutional
neural networks, deep learning, FedAvg
algorithm, L2-norm regularization and the
pFedMe algorithm.
Propose the possibility of using federated
learning to protect the privacy of a large number
of users and data and implement the FL
algorithm and personalized FL for training
machine learning models.
Gain learning performance through personalized
collaborative learning and make comparisons
between the algorithms FedAvg, Per-FedAvg,
and pFedMe through simulation.

1.4 Report Structure
The report is structured as follows: Chapter 2
introduces the background of Federated
Learning, including the algorithms FedAvg,
L2-norm Regularization, and pFedMe. Chapter 3
discusses the design of two experiments
implementing the FedAvg and pFedMe
algorithms, explaining the parameters, and
functions in detail. Chapter 4 presents the
experimental results, including training losses
and testing accuracy, and compares the
performance between different parameters (e.g.,
global epochs, local epochs, communication

rounds). The Conclusion and Further Work are
provided in Chapter 5.

2. Related Work

2.1 FedAvg
FedAvg is one of the earliest FL algorithms that
employs local SGD updates and constructs a
global model using a subset of clients with
non-IID date. Their proposed FL update scheme
is synchronous, with communication rounds
comprising of a fixed set of K clients, each
with a fixed local dataset. At the beginning of
each round, a random fraction C of clients are
chosen, and the server sends the current global
algorithm state, such as the present model
parameters, to them. The selected clients then
start local computation based on the global state
and their local dataset, and send an update to the
server, which incorporates the updates to its
global state. This process is then repeated.
These are three simplified steps for better
understanding:
(i) At every round of communication, clients
receive the up-to-date global model from the
server.
(ii) Using their respective local data, clients
modify their individual models locally.
(iii)A subset of clients is chosen by the server,
gathers their newest local models, and utilizes
them to update the global model. This process is
repeated until convergence.
If we define d

if      1,  . . . ,  i N ,
denotes the expected loss over the data
distribution of the client i :

( ) E [ ( ; )].ii if f    (1)
i denotes a data sample selected randomly

from the distribution of client i ,
and ( ; )if   represents the loss function
associated with this sample and the model
parameters w. The goal is to solve:
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to find a global model  .
Deep learning has seen a surge in successful
applications, most of which rely on SGD
variants for optimization. In fact, many
progresses in this field are owed to modifying
the model structure and loss function to make
them more easily optimized by gradient-based
methods[14]. This makes it intuitive for H.
Brendan McMahan and his team to develop
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federated optimization algorithms that build on
the existing SGD framework. An approach to
applying SGD to the federated optimization
problem involves choosing a ratio of clients (the
ratio is C ) in each round of communication
and computing the loss gradient over all the data.
This method, called FederatedSGD (FedSGD),
sets C as the global batch size, with C = 1
being equivalent to full-batch gradient descent.
While the ratio of selected clients C is fixed
and the server performs a weighted average of
the results, each client performs a gradient
descent ( ( )k k k

kF      , is the learning
rate) on the local model. For such a model, we
can increase the number of local gradient
descent times for each client and iterate multiple
times before each communication. We call this
method FederatedAverage (or FedAvg).
Three key parameters decides computation:
 B - size of local minibatch size for client
updates
 E - the number of local epochs
 C - the ratio of clients computing in each
communicaiton (C is a decimal)
The whole local dataset is a single minibatch
when B   ,. Thus, FedSGD corresponds to the
situation of the algorithm is that B   and

1E  . Here is the pseudo-code of Algorithm
FedAvg.
Algorithm FedAvg
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Figure 1. Flow Chart of FedAvg

2.2 L2-norm Regularization
In machine learning, we often use a loss function
to measure how well our model is performing on
a particular task. When training a machine
learning model, the objective is to identify the
set of parameters (also known as weights) that
minimize the loss function, such that the model
makes accurate predictions on new data.
However, sometimes we encounter a problem
known as overfitting. Although the model may
perform well on the training data, it may not
generalize well to new and unseen data, which
can occur if the model is excessively
complicated or contains a large number of
parameters compared to the available training
data. When this happens, the model may fit the
training data too closely, and the learned
parameters may be highly specific to the training
set, making it difficult to generalize to new data.
To prevent overfitting, we can use regularization
techniques, which the loss function will be
added a penalty term that obstructs the model
from learning overly complex or highly specific
patterns in the training data. One popular form
of regularization is L2-norm regularization,
which adds a penalty term that is proportional to
the square of the L2-norm of the model's
weights. The L2-norm of a vector is the square
root of the sum of its squared components. In the
case of a machine learning model, the L2-norm
of the weights is the square root of the sum of
the squared weights. The L2-norm penalty term
in the loss function can be expressed as:

2 2 2 2|| || 2 ( 1 2 ... ) w w w wn     (3)
where  is a regularization parameter that
effects the intensity of the penalty term, and

2w is the L2-norm of the weights. This penalty

term is added to the original loss function, which
we are trying to minimize during training. The
regularized loss function can be expressed as:

2_ ( ) _ ( | || ) | 2L reg w L unreg w w  (4)
where  _L unreg w is the unregularized loss
function. The regularized loss function
encourages the model to learn smaller and more
evenly distributed weights, which aid in
preventing over-fitting and enhancing the
model's capability to obtain to fresh data
During training, the regularization parameter 
is chosen based on a validation set or through
cross-validation. A larger value of  results in
a stronger penalty, which can lead to smaller
weights and less overfitting, but can also lead to
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underfitting if the penalty is too strong. A
smaller value of  allows the model to study
more complicated data patterns but may also
result in overfitting in the condition that the
model becomes so specific that it can’t learn the
training data.

2.3 pFedMe
2.3.1 Problem Function
The algorithm pFedMe in paper[12] takes another
method by using a L2-norm regularization loss
function rather than solving the traditional FL
problem in algorithm FedAvg[12]. The
regularized loss function:

2( ) ,
2

i i if     (5)

where the personalized model of client i is
denoted as i , and  is a regularization
parameter that determines the influence of 
on the personalized model. Increasing  can be
advantageous for clients with insufficient data to
benefit from the rich aggregation of data,
whereas decreasing  enables clients with
adequate and relevant data to give priority to
personalization. To avoid extreme scenarios
where there is either no FL (  =0) or no
personalized FL (  =∞), it is important to note
that  should be within the range of (0, ∞).
The proposed personalized FL approach enables
clients to develop their personalized models with
unique ways while also contributing to the
"reference point"  . Based on this, the
personalized Federated Learning can be saw as a
bi-level problem:

2

1

1pFedMe: min ( ): ( ) ,where ( ) min ( ) .
2d d

N
i i i i i

i i
F F F f

N 

     
 

         
   


 

(6)

In pFedMe,  is the aggregation of various
client parameters (outer loop), i update
through local data and distance from  (inner
loop). (6) encourage many learning algorithm
designs and it is the famous Moreau
envelope[15][16]. The optimal personalized model
is the only solution for pFedME, also known as
the proximal operator, defined as follows:

2
/ˆ ( ) : ( ) arg min ( ) .

2
i fi i i i

di

prox f
     


     
 

(7)

2.3.2 Algorithm
The algorithm pFedMe operates similarly to
traditional FL methods. In each communication
round ( t ), the current global model ( t ) is
distributed by the server to all clients, and then
each client conducts R local updates, the

server obtains the most recent local models from
a randomly selected subset ( tS ) of clients to
execute model averaging. The use of a parameter
 is introduced in pFedMe to update the global
model, and it includes FedAvg's model
averaging when  =1. This parameter indicates
the extent to which server parameters are
utilized prior to aggregation. There are two
differences between FedAvg and pFedMe. First
is that, at the inner loop of the algorithm, each
client i solves function (7) to obtain their
customized model ,( )t

i i r  , where ,
t
i r

represents the local model of client i at the
global round t and local round r . The role of
local models, similar to FedAvg, is to aid in the
construction of a global model while minimizing
the number of communication rounds between
the clients and the server. Secondly, at the outer
loop, the local update of client i employs
gradient descent with respect to iF (instead of
if ) as follows:

, 1 , ,( ),t t t
ii r i r i rF       (8)

where  is the learning rate and ,( )t
i i rF  is

calculated according to the function
( ) ( ( ))i iF         using the current

personalized model ,( )t
i i r  .

Here is the algorithem:
Algorithm pFedMe

0

,0

1 input: , , , , , ,
2      for 0 to -1 do
3           Server sends  to all clients
4           for all 1 to  do
5                
6                for 0 to -1 do
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9           Server uniformly samples a subset of clients S  with size S, 
             and each of the sampled client sends the local model , ,  to the sever
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i S
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v is an accuracy level.

Figure 2. Flow Chart of pFedMe
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3. Design and Implementation

3.1 Design forAlgorithm FedAvg
3.1.1 Setting Up a Python Environment
To implement the FedAvg algorithm, a Python
environment is set up using Anaconda. This
environment includes essential libraries such as
NumPy, PyTorch, TorchVision, Matplotlib, and
Pandas, which are crucial for data processing,
model development, and visualization.
3.1.2 Acquiring the MNIST Dataset
The MNIST dataset, a benchmark for machine
learning, is obtained using PyTorch's data loader.
This dataset contains 28x28 grayscale images of
handwritten digits and their labels, and it is
widely used for training and testing machine
learning models.
3.1.3 Dividing Training Data into Multiple
Groups
The training data is partitioned into multiple
groups using PyTorch's DataLoader. This
function divides the dataset into batches,
facilitating efficient data iteration and processing.
This step is vital for preparing the data for
federated learning, where each group represents
a different client.
3.1.4 Parameter Configuration of Convolutional
Neural Networks
A Convolutional Neural Network (CNN) is
configured with two convolutional layers, two
max pooling layers, and two fully connected
layers. The first convolutional layer uses 20
filters of size 5x5, followed by a ReLU
activation function and a max pooling layer of
size 2x2. The second convolutional layer applies
50 filters of size 5x5, again followed by a ReLU
activation function and a max pooling layer. The
output is flattened and passed through fully
connected layers with 500 units and 10 units,
respectively, with the final output probabilities
obtained using the F.log_softmax function.
3.1.5 Dataset Partitioning
The dataset is partitioned into IID (random
subsets) and Non-IID (distinct subsets)
distributions. For Non-IID partitioning, the data
is sorted by labels, divided into shards, and
allocated to clients. For IID partitioning, the data
is shuffled and evenly distributed among clients.
This step simulates different data distributions in
federated learning environments.
3.1.6 Implementing the Federated Averaging
Algorithm
The FedAvg algorithm is implemented using

PyTorch. The global model is trained locally on
each client's dataset, and the updates are
aggregated to form a new global model. This
process is repeated over multiple iterations to
refine the model. The training involves setting
the model to training mode, using an SGD
optimizer, and iterating through data batches to
update model parameters. The testing phase
evaluates the model's performance by
calculating test loss and accuracy.
3.1.7 Plotting Performance After Federated
Averaging
The performance of the trained model is
visualized using matplotlib. Line plots show
how test accuracy and loss change over epochs,
providing insights into the model's training
progress.

3.2 Design forAlgorithm pFedMe
3.2.1 Setting Up a Python Environment
A Python environment is set up for the pFedMe
algorithm using Anaconda. This environment
includes libraries such as NumPy, PyTorch,
TorchVision, Matplotlib, Pandas, Pillow, Scipy,
and Tqdm, which are necessary for data
processing and model development.
3.2.2 Generate Non-IID MNIST Dataset
The MNIST dataset is prepared for federated
learning by downloading it using fetch_openml().
The data is standardized by normalizing pixel
values. The dataset is organized into sub-lists for
each digit label, and random numbers are
generated to allocate samples to users,
simulating a Non-IID distribution.
3.2.3 Implementation of the Logistic Regression
Model
A multi-class logistic regression model is
implemented as a subclass of nn.Module. The
model takes 784 input features (flattened 28x28
images) and outputs probabilities for 10 digit
classes using a log softmax function.
3.2.4 Creating pFedMe Server
The pFedMe server is created by extending the
Server class. This class initializes attributes for
federated learning, including the dataset, model,
number of users, and training parameters. The
pFedMe class implements the personalized
federated learning algorithm, creating user
objects and managing the training process.
3.2.5 Implementation of Algorithm pFedMe
The pFedMe algorithm involves several steps:
sending the global model to users, evaluating the
global model, updating local models, selecting
users for aggregation, evaluating personalized
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models, and aggregating personalized models to
update the global model. This process is
repeated over multiple iterations to optimize the
model. The training results are saved, and the
final global model is preserved for future use.

4. Result and Discussion

4.1 Results of the Algorithm FedAvg

Figure 3. Test Accuracy

Figure 4. Test Loss
In the result of algorithm FedAvg, there are in
total 100 clients participate in communication
for federated learning. The experiment
investigates two methods of distributing the
MNIST dataset among clients. The first method
is IID, where the data order is disrupted and
divided into 100 clients and each client receives
600 examples. The second method is Non-IID,
which involves sorting the data by numerical
label, dividing it into 200 shards of size 300, and
assigning two shards to each of the 100 clients.
This partition of the data is considered a
pathological non-IID partition since only two
digits examples will be obtain by most clients. It
enables us to explore the extent to which
algorithms will break on highly non-IID data.
Both partitions are balanced.
As we can see in six figures in Figure 3 above
that their common characteristic is that as the
number of epochs increases (i.e., the number of
communication cycles between servers and

clients), the test accuracy also increases, and
they have a very similar arc curve. The federated
learning model has better learning performance
for IID data than non-IID, which is also
consistent with empirical speculation. More
external communication (between client and
server) can increase the test accuracy of the
model and ultimately approach the peak. The
rate of change in testing accuracy is first fast and
then slow. More local data updates result in test
accuracy reaching a high value from the
beginning, while the subsequent curve
trajectories remain the same.
In Figure 4, the figures are about the test loss of
FedAvg. In the test loss image, the trend of the
curve is completely opposite. As the
increasement of the number of epochs, the test
loss decreases. The larger the Global epochs, the
smaller the final test loss that can be achieved.
As the local epochs increase, the test loss can
reach a smaller value faster, which means that
the training performance is better.

4.2 Results of the Algorithm pFedMe and
Comparison

Figure 5. Training Accuracy and Training
Loss

From the Figure 5, it can be seen that pFedMe
performs the best, achieving higher testing
accuracy and lower training losses. The
performance of pFedMe's global model is
similar to that of traditional FedAvg, which
indirectly indicates that pFedMe algorithm
separates the local and global models. While
ensuring the high performance of the local
model, it improves the performance of the global
model and achieves the goal of personalized
federated learning. It solves the problem of
FedAvg that good performance of global model
means bad performance in personal devices.
Results show that pFedMe can achieve relatively
advanced convergence speedup rate and pFedMe
performs better than the traditional FedAvg and
the meta-learning based personalized FL
algorithm Per-FedAvg by using MNIST datasets.
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5. Conclusion
This report demonstrates the potential of
personalized federated learning in dataset
MNIST. The pFedMe algorithm shows
significant advantages over traditional FedAvg
in terms of model accuracy, personalization
effects, and convergence speed. Future work will
focus on exploring adaptive learning rates,
developing better datasets, and optimizing the
algorithm's running time.
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